
Schrodinger Equation on the Computer

1 The Algorithm

The non-relativistic Schrodinger Equation describing the time-evolution of the wave function of a quantum
particle is

i~
∂ψ(~r, t)

∂t
= − ~2

2m
∇2ψ(~r, t) + V (~r)ψ(~r, t) (1)

where V (~r) is the (classical) potential energy function due to the interaction of the particle with its
environment. Given the wavefunction at some instant, this first order differential equation in time can
be, in principle, integrated to compute the wavefunction at any other instant of time. There are standard
algorithms that treat this as a standard parabolic partial differential equation, and exploit the tools to
solve such differential equations. However, such algorithms, though precise up to a high degree, hide
the essence of the linear vector space structure of quantum mechanics, and Schrodinger equation being
a unitary evolution in the vector space of quantum states. In this note, we look at an algorithm which,
perhaps not as accurate as the others, make this connection manifest. For simplicity, we consider a particle
propagationg in one-dimension (or, more physically, constrained to be confined to a very thin ‘line’ due to
a suitable interaction). Then, the equation becomes

i~
∂ψ(x, t)

∂t
= − ~2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t) (2)

The first step in solving the equation through an algorithm is to discretize the space in which the particle
propagates. We visualise the discrete space as a lattice of points with lattice spacing a. Let the lattice
points be labelled xi. The wavefunction at ith site is then

ψ(xi, t) = 〈xi| ψ(t)〉

where |xi〉 is state of definite position with a Dirac delta normalisation 〈xi| xj〉 = δ (xi − xj). The wave-
function normalisation is ∫ ∞

−∞
dx |ψ(x, t)|2 = 1

For the discrete system, this reduces to ∑
i

a |〈xi| ψ(t)〉|2 = 1

This motivates us to define normalisable states of definite position ˜|xi〉 =
√
a |xi〉. For the states |xi〉

to satisfy the delta function normalisation, these states satisfy 〈x̃i| x̃j〉 = δij where δij is the Kronecker
delta. To see that is correctly gives a delta function normalisation for the states |xi〉, we note that given
〈x̃i| x̃j〉 = δij , it follows that 〈xi| xj〉 = (1/a)δij . We now need to demonstrate that this is a discrete Dirac
delta function. First, this is clearly zero if xi 6= xj . Since

∫
dx→

∑
i a, we need to demonstrate that this

satisfies the other property of a delta function∫ ∞
−∞

dxi δ(xi − xj) = 1
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whose discrete form should be ∑
i

a 〈xi| xj〉 = 1

This is clearly true, since ∑
i

a 〈xi| xj〉 =
∑
i

a× 1

a
δij

=
∑
i

δij

= 1

Then

ψ(xi, t) = 〈xi| ψ(t)〉
= (1/

√
a) 〈x̃i| ψ(t)〉

= (1/
√
a) φi(t)

where φi = 〈x̃i| ψ〉. This function is dimensionless and satisfies the normalisation condition∑
i

|φi|2 = 1 (3)

The discretised second derivative of the wavefunction, evaluated at lattice point xi, is

∂2ψ(x, t)

∂x2

∣∣∣∣
xi

=
ψ (xi + a, t)− 2ψ (xi, t) + ψ (xi − a, t)

a2

Since ψ(xi + a) = ψi+1, etc., the discretised Schrodinger equation (written in terms of the dimensionless
wavefunction φ) reduces to

i~
dφi(t)

dt
= − ~2

2ma2
[φi+1(t)− 2φi(t) + φi−1(t)] + Viφi(t)

where Vi = V (xi). This can be written as a matrix equation

i~
dφ(t)

dt
= Hφ (4)

where φ is a column vector with entries φi and H is the Hamiltonian matrix with matrix elements

Hij = − ~2

2ma2
[δi+1,j − 2 δi,j + δi−1,j ] + Vi δi,j

It is easy to verify that H is Hermitian (in fact, it is symmetric: Hij = Hji). The generic problem is
as follows: the state φ(0) is given at t = 0 and the state φ(t) at instant t is to be determined. Since
we have reduced the problem to a unitary time evolution generated by the Hermitian matrix H, we can
immediately write the formal solution to eqn.(4)

φ(t) = e−iHt/~φ(0) (5)

To implement this solution, we first diagonalise the Hamiltonian matrix H to determine its eigenvalues Ei
and eigenvectors φEi

HφEi = EiφEi (6)

Since H is Hermitian, the (normalised) eigenvectors will form an orthonormal basis for the vector space

φ†Ei
φEj = δij (7)
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The completeness of the set {φEi} allows us to express the state at t = 0 as a linear superposition of these
states

φ(0) =
∑
i

ciφEi

where ci = φ†Ei
φ(0). The state at instant t is then given by

φ(t) = e−iHt/~φ(0)

=
∑
i

ci e
−iEit/~φEi

This completes the algorithm. The implementation of the algorithm requires the diagonalisation of the
Hamiltonian matrix. The following example discusses how this is achieved computationally.

2 Example and Dimensional Analysis

As an example, we take the quantum harmonic oscillator, for which V (x) = (1/2)mω2x2, where ω is the
classical (angular) frequency of the oscillator. We label the spatial lattice points as xi = i × a where i is
an integer. The Hamiltonian matrix elements are

Hij = − ~2

2ma2
[δi+1,j − 2 δi,j + δi−1,j ] + (1/2)mω2x2i δi,j

= − ~2

2ma2
[δi+1,j − 2 δi,j + δi−1,j ] + (1/2)mω2a2 i2 δi,j

We now need to do some dimensional analysis, to express variables in units of natural scales. There is a
natural length scale l0 =

√
~/mω, natural energy scale E0 = (1/2)~ω and natural time scale is t0 = 2/ω

(the factor of 2 simplifies the form of the time evolution equation). We express the lattice spacing a in
terms of l0 as a = l0∆ where ∆ is dimensionless. Then the Hamiltonian simplifies to

Hij =
~ω
2

[
−δi+1,j − 2 δi,j + δi−1,j

∆2
+ i2δi,j

]
The eigenvalue equation is

HφEi = EiφEi

We measure Ei in natural unit of energy E0, so that Ei = εiE0 where εi is the dimensionless energy
eigenvalue. Then the eigenvalue equation becomes

H̃φEi = εiφEi

where H̃ = H/E0. To compute the time-evolution, we use time τ = t/t0. Then the time evolution becomes

φ(τ) =
∑
i

ci e
−iεiτφEi

which solves the problem. From a computational point of view, the key is to set up the Hamiltonian matrix
and determine its eigenvalues and eigenvectors.
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Quantum_Harmonic_Oscillator 18/05/17, 10:24 AM

import numpy as np  ## Imports module 'numpy' and uses alias 'np' to use it.
from numpy import linalg as lin   ## imports 'linalg' (a linear algebra module) and uses alias 'lin' to 

use it.
from pylab import *  ## This imports matplotlib, a plotting module.

delta = 0.01   ## Lattice spacing.
endpoint = 6.0 ## Lattice extends from x = -6.0 to +6.0
N = 600 ## Number of lattice points is 2*N+1
x = arange(-6.0,6.01,0.01)   ### Creates a list of numbers from -6.0 to 6.0 in steps of 0.1. This stores 

the lattice.

def kronecker(i,j):   ### The Kronecker Delta function.
    if i == j:
        return 1
    else:
        return 0

def v(z):
    return z**2
        
def h(i,j):  ### This defines the matrix element of the discretized Hamiltonian operator for this 

interaction 
    return (-kronecker(i+1,j) + 2*kronecker(i,j) - kronecker(i-1,j))/delta**2 + v(delta*i) * 

kronecker(i,j)
    
    
H = np.array( [[h(i,j) for i in range(-N,N+1)] for j in range(-N,N+1)] )  ## Constructs the Hamiltonian 

matrix from its matrix elements.

H_eigenvalues, H_eigenvectors = lin.eig(H)  ## H_eigenvalues stores the eigenvalues and H_eigenvectors 
stores the eigenvectors as columns.

idx = H_eigenvalues.argsort()  ### These three lines sort the eigenvalues and eigenvectors in order of 
increasing eigenvalues.

H_eigenvalues = H_eigenvalues[idx]
H_eigenvectors = H_eigenvectors[:,idx]

eigen = [H_eigenvalues[i] for i in range(4)]  ### First 4 eigenvalues
y = [H_eigenvectors[:,i] for i in range(4)] ### first 4 eigenvectors

potential = 0.1*np.array([v(delta*i) for i in range(-N,N+1)])  ### The potential energy function to be 
plotted, suitably scaled to fit the plot.

fig = plt.figure()
ax = plt.axes(xlim=(-6,6), ylim=(-1,5))
line, = ax.plot([], [], lw=2)
plot(x,potential, '--')  ### Plot of the potential energy function.
for i in range(0,4):
    Energy = np.linspace(eigen[i],eigen[i],1201)  ### energy level to be plotted.
    plot(x,0.1*Energy, '-c')  ## Plots energy level.
    plot(x,-7*y[i]+0.1*Energy, label = '$\psi_ {%s}$, $E_{%s}$ = %s' % (i, i, round(eigen[i],2))) ## 

Plots wavefunction with origin shifted to 
#the location of the energy level. The energy is reported in units of hbar*omega/2

legend()
show()

The output of the program shows the ground state and the first three excited state energy eigenvalues
and wavefunctions
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We now modify this program to compute the time evolution. The following program takes an initial
wavefunction (a Gaussian wavefunction in this example) and evolves it with time under the harmonic
oscillator interaction. It displays the time evolved probability function |φ|2 as an animation and also saves
the animation to a file using ‘ffmpeg’

Page 1 of 1

Time_Evolution_Harmonic.py 18/05/17, 9:18 PM

import numpy as np  
from numpy import linalg as lin   
from matplotlib import pyplot as plt
from matplotlib import animation # Animation module.

Writer = animation.writers['ffmpeg'] ## These lines set up saving the created animation. 
writer = Writer(fps=15, metadata=dict(artist='Me'), bitrate=1800)

delta = 0.1   ## Lattice spacing.
endpoint = 6.0 ## Lattice extends from x = -6.0 to +6.0
N = 60 
dimension = 2*N + 1 # Number of lattice points.
x = np.linspace(-6,6,2*N+1)   ### List of numbers from -6.0 to 6.0 in steps of 0.1 (lattice)

def kronecker(i,j):   
    if i == j:
        return 1
    else:
        return 0       
def h(i,j): 
    return (-kronecker(i+1,j) + 2*kronecker(i,j) - kronecker(i-1,j))/delta**2 + delta**2 * i**2 * 

kronecker(i,j)
     
H = np.array( [[h(i,j) for i in range(-N,N+1)] for j in range(-N,N+1)] )  
H_eigenvalues, H_eigenvectors = lin.eig(H)  
idx = H_eigenvalues.argsort()  
H_eigenvalues = H_eigenvalues[idx]
H_eigenvectors = H_eigenvectors[:,idx]

###### The initial Gaussian wavefunction ##########
a = 1.0 ## Initial spread in units of l0
b = 0.0 ## Initial peak of the Gaussian
p0 = 2.0 ## Initial momentum in units of hbar/l0

def psi0(y):
   return (1/pow(np.pi*(a**2),0.25))*np.exp(-((y-b)**2)/(2.0*a**2) - 1j*p0*y)

Psi0 = np.sqrt(delta)*np.array( [psi0(delta*i) for i in range(-N,N+1)], 'complex' )
#################### Time evolving state  ################################
def Psi(t): # Time evolution function

sum = np.zeros(dimension, 'complex')
for n in range(dimension):

c = np.vdot(Psi0, H_eigenvectors[:,n]) # nth expansion coefficient 
E = H_eigenvalues[n]
sum += c * np.exp(-E*t*1.0j) * H_eigenvectors[:,n]

return sum

def Prob(t): # Probability function
    return np.array( [abs(Psi(t)[i])**2 for i in range(dimension)] )

u = np.linspace(-6, 6, 2*N+1,endpoint=True)
v = 0.003*u**2  
fig = plt.figure()
ax = plt.axes(xlim=(-6,6), ylim=(0,0.2))
line, = ax.plot([], [], lw=2)
plt.plot(u,v)

def init():
    line.set_data([], [])
    return line,
def animate(i):
    x = np.linspace(-6, 6, 121)
    y = Prob(0.05*i)
    line.set_data(x, y) 
    return line,

anim = animation.FuncAnimation(fig, animate, init_func=init,
                               frames=200, interval=20, blit=True)
anim.save('Time_Evolution_Oscillator.mp4', writer=writer)                                                                                                                 
plt.show()
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