Schrodinger Equation on the Computer

1 The Algorithm

The non-relativistic Schrodinger Equation describing the time-evolution of the wave function of a quantum
particle is

G W G2 (7
ihiﬁg;t) = =5 VA1) + V(I)Y(r 1))

where V() is the (classical) potential energy function due to the interaction of the particle with its
environment. Given the wavefunction at some instant, this first order differential equation in time can
be, in principle, integrated to compute the wavefunction at any other instant of time. There are standard
algorithms that treat this as a standard parabolic partial differential equation, and exploit the tools to
solve such differential equations. However, such algorithms, though precise up to a high degree, hide
the essence of the linear vector space structure of quantum mechanics, and Schrodinger equation being
a unitary evolution in the vector space of quantum states. In this note, we look at an algorithm which,
perhaps not as accurate as the others, make this connection manifest. For simplicity, we consider a particle
propagationg in one-dimension (or, more physically, constrained to be confined to a very thin ‘line’ due to
a suitable interaction). Then, the equation becomes

pOP@t) B ON@) e @

ot 2m Ox?
The first step in solving the equation through an algorithm is to discretize the space in which the particle
propagates. We visualise the discrete space as a lattice of points with lattice spacing a. Let the lattice
points be labelled z;. The wavefunction at i site is then

b(wi) = (2| P(1))

where |z;) is state of definite position with a Dirac delta normalisation (z;| ;) = 6 (x; — ;). The wave-
function normalisation is

| vt =1

For the discrete system, this reduces to

Y allzil pO) =1

7

This motivates us to define normalisable states of definite position |z;) = y/a|z;). For the states |z;)
to satisfy the delta function normalisation, these states satisfy (;| ;) = d;; where J;; is the Kronecker
delta. To see that is correctly gives a delta function normalisation for the states |x;), we note that given
(T;| ©5) = 045, it follows that (x;| ;) = (1/a)d;;. We now need to demonstrate that this is a discrete Dirac
delta function. First, this is clearly zero if z; # ;. Since [dx — Y, a, we need to demonstrate that this
satisfies the other property of a delta function

/ dxi 5(1‘2 — J}j) =1

—0o0

whose discrete form should be

Za<x¢| zj) =1

%

This is clearly true, since
Za(wﬂ xj) = Za X l(5¢~
. ! . a”
(2 (2
= 20
i

=1
Then
Pait) = (@] (1))

= (1/Va) (& (1))
= (1/Va) ¢i(t)

where ¢; = (z;| ¢). This function is dimensionless and satisfies the normalisation condition
2
> lgil* =1 (3)
i

The discretised second derivative of the wavefunction, evaluated at lattice point z;, is

62¢(3«"7t) _ ¢($z+a,t)—2¢ (xut)"i‘w(xz_avt)

2 2
ox - a

Since ¥ (x; + a) = 1i41, etc., the discretised Schrodinger equation (written in terms of the dimensionless
wavefunction ¢) reduces to

. 2
p d0) _

dt 2ma?

[Pit1(t) = 2¢4(t) + Pi—1(t)] + Vigs(t)
where V; = V(z;). This can be written as a matrix equation

_do(t)
ih == =H¢ (4)

where ¢ is a column vector with entries ¢; and H is the Hamiltonian matrix with matrix elements

h2
Hij = —— [0iv15 — 2 0ij + 0im1 5] + Vi biyj

2ma

It is easy to verify that H is Hermitian (in fact, it is symmetric: H;; = Hj;). The generic problem is
as follows: the state ¢(0) is given at t = 0 and the state ¢(¢) at instant ¢ is to be determined. Since
we have reduced the problem to a unitary time evolution generated by the Hermitian matrix H, we can
immediately write the formal solution to eqn.(4)

¢(t) = e /g (0) (5)

To implement this solution, we first diagonalise the Hamiltonian matrix H to determine its eigenvalues F;
and eigenvectors ¢,
Hop, = Ei¢p, (6)

Since H is Hermitian, the (normalised) eigenvectors will form an orthonormal basis for the vector space
O b, = 0ij (7)

2

The completeness of the set {¢p,} allows us to express the state at ¢ = 0 as a linear superposition of these
states

$(0) = cion,
i
where ¢; = qbglqﬁ(()) The state at instant ¢ is then given by

o(t) = e MNg(0)
= Zci eiiEit/h(lsEi

This completes the algorithm. The implementation of the algorithm requires the diagonalisation of the
Hamiltonian matrix. The following example discusses how this is achieved computationally.

2 Example and Dimensional Analysis

As an example, we take the quantum harmonic oscillator, for which V(z) = (1/2)mw?x?, where w is the
classical (angular) frequency of the oscillator. We label the spatial lattice points as x; = i X a where i is
an integer. The Hamiltonian matrix elements are

h2
Hij = —72 a2 [(SH_LJ' -2 (51'7]‘ + 62‘—1,]‘] + (I/Q)mwzx? 51‘73'
h2 ,
= —W [5i+17j -2 51,] + (57;_1’]'] + (1/2)mw2a2 Z2 617]

We now need to do some dimensional analysis, to express variables in units of natural scales. There is a
natural length scale [y = y/h/mw, natural energy scale Ey = (1/2)hw and natural time scale is ty = 2/w
(the factor of 2 simplifies the form of the time evolution equation). We express the lattice spacing a in
terms of [y as a = [pA where A is dimensionless. Then the Hamiltonian simplifies to

hw | i1, =2 0ij + 0i1j

-2
Hij = 7 - A2 +1 52',]'

The eigenvalue equation is
Hop, = Eidp,

We measure E; in natural unit of energy FEy, so that F; = ¢;Fy where ¢; is the dimensionless energy
eigenvalue. Then the eigenvalue equation becomes

Hop, = €i¢r,

where H = H /Eo. To compute the time-evolution, we use time 7 = t/ty. Then the time evolution becomes
$(7) =Y cie g,
i

which solves the problem. From a computational point of view, the key is to set up the Hamiltonian matrix
and determine its eigenvalues and eigenvectors.

import numpy as np ## Imports module ‘numpy' and uses alias 'np' to use it.

from numpy import linalg as lin ## imports 'linalg' (a linear algebra module) and uses alias 'lin' to
use 1it.

from pylab import x ## This imports matplotlib, a plotting module.

delta = 0.01 ## Lattice spacing.

endpoint = 6.0 ## Lattice extends from x = —-6.0 to +6.0

N = 600 ## Number of lattice points is 2xN+1

x = arange(-6.0,6.01,0.01) ### Creates a list of numbers from -6.0 to 6.0 in steps of 0.1. This stores
the lattice.

def kronecker(i,j): ### The Kronecker Delta function.
if i==j:
return 1
else:
return 0

def v(z):
return zxx2

def h(i,j): ### This defines the matrix element of the discretized Hamiltonian operator for this
interaction
return (-kronecker(i+1,j) + 2xkronecker(i,j) - kronecker(i-1,j))/delta%x2 + v(deltaxi) *
kronecker(i,j)

H = np.array([[h(i,j) for i in range(-N,N+1)] for j in range(-N,N+1)]) ## Constructs the Hamiltonian
matrix from its matrix elements.

H_eigenvalues, H_eigenvectors = lin.eig(H) ## H_eigenvalues stores the eigenvalues and H_eigenvectors
stores the eigenvectors as columns.

idx = H_eigenvalues.argsort() ### These three lines sort the eigenvalues and eigenvectors in order of
increasing eigenvalues.

H_eigenvalues = H_eigenvalues[idx]

H_eigenvectors = H_eigenvectors[:,idx]

eigen = [H_eigenvalues[i] for i in range(4)] ### First 4 eigenvalues
y = [H_eigenvectors[:,i] for i in range(4)] ### first 4 eigenvectors

potential = 0.1xnp.array([v(deltaxi) for i in range(-N,N+1)]) ### The potential energy function to be
plotted, suitably scaled to fit the plot.
fig = plt.figure()
ax = plt.axes(xlim=(-6,6), ylim=(-1,5))
line, = ax.plot([I, [1, lw=2)
plot(x,potential, '—-') ### Plot of the potential energy function.
for i in range(0,4):
Energy = np.linspace(eigen[il,eigen[i],1201) ### energy level to be plotted.
plot(x,0.1xEnergy, '-c') ## Plots energy level.
plot(x,-7xy[i]+0.1%Energy, label = '$\psi_ {%s}$, $E_{%s}$ = %s' % (i, i, round(eigen[i],2))) ##
Plots wavefunction with origin shifted to
#the location of the energy level. The energy is reported in units of hbarxomega/2

legend()
show()

The output of the program shows the ground state and the first three excited state energy eigenvalues
and wavefunctions

wo, Eo = 1.0
w1, E1= 3.0
w2, E2 =50
4, E3=7.0 /

-6 -4 -2] 2 4 6

We now modify this program to compute the time evolution. The following program takes an initial
wavefunction (a Gaussian wavefunction in this example) and evolves it with time under the harmonic
oscillator interaction. It displays the time evolved probability function |q§]2 as an animation and also saves
the animation to a file using ‘ffmpeg’

import numpy as np

from numpy import linalg as lin

from matplotlib import pyplot as plt

from matplotlib import animation # Animation module.

Writer
writer

animation.writers['ffmpeg'] ## These lines set up saving the created animation.
Writer(fps=15, metadata=dict(artist='Me'), bitrate=1800)

delta = 0.1 ## Lattice spacing.

endpoint = 6.0 ## Lattice extends from x = -6.0 to +6.0

N = 60

dimension = 2xN + 1 # Number of lattice points.

x = np.linspace(-6,6,2%N+1) ### List of numbers from —-6.0 to 6.0 in steps of 0.1 (lattice)

def kronecker(i,j):
if i == j:
return 1
else:
return 0
def h(i,j):
return (-kronecker(i+1,j) + 2xkronecker(i,j) - kronecker(i-1,j))/delta**2 + deltax*2 * ixk2 *
kronecker(i,j)

H = np.array([[h(i,j) for i in range(-N,N+1)] for j in range(-N,N+1)])
H_eigenvalues, H_eigenvectors = lin.eig(H)

idx = H_eigenvalues.argsort()

H_eigenvalues = H_eigenvalues[idx]

H_eigenvectors = H_eigenvectors[:,idx]

The initial Gaussian wavefunction #HHHHHHHHHH
a = 1.0 ## Initial spread in units of 10

b = 0.0 ## Initial peak of the Gaussian

po = 2.0 ## Initial momentum in units of hbar/10

def psio(y):
return (1/pow(np.pik(a**2),0.25))*np.exp(=((y=b)**2)/(2.0xa**x2) — 1j*p0dxy)

Psi® = np.sqrt(delta)*np.array([psi@(deltaxi) for i in range(-N,N+1)], 'complex')
HAHHHH AR Time evolving state #HHHHHHIHHIRHIRIHHEH
def Psi(t): # Time evolution function
sum = np.zeros(dimension, 'complex')
for n in range(dimension):
c = np.vdot(Psi@, H_eigenvectorsl[:,nl) # nth expansion coefficient
E = H_eigenvalues[n]
sum += C * np.exp(-Extx1.0j) * H_eigenvectors[:,n]
return sum

def Prob(t): # Probability function
return np.array([abs(Psi(t)[i])#**2 for i in range(dimension)])

u = np.linspace(-6, 6, 2xN+1,endpoint=True)
vV = 0.003%u**2

fig = plt.figure()

ax = plt.axes(xlim=(-6,6), ylim=(0,0.2))
line, = ax.plot([], [1, 1w=2)

plt.plot(u,v)

def init():
line.set_data([], [])
return line,

def animate(i):
X = np.linspace(-6, 6, 121)
y = Prob(0.05%i)
line.set_data(x, y)
return line,

anim = animation.FuncAnimation(fig, animate, init_func=init,

frames=200, interval=20, blit=True)
anim.save('Time_Evolution_Oscillator.mp4', writer=writer)
plt.show()

