Orthogonal Polynomials and Polynomial Approximation to
Functions

1 The Vector Space Ls(a,b)

The vector space La(a,b) is the set of all square-integrable functions defined over the interval [a,b]. If a
function f € La(a,b), then
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Given two such function f and g, it is easy to see that a linear combination ¢ f + cog also satisfies condition
(1). We can define a 'zero’ function fy such that fo(x) =0V = € [a,b]. Then, it is easy to see that the set
of all such functions form a vector space. We can further define an inner-product on this space as follows
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It is easy to check that this satisfies the linearity condition for the inner product

f-(ag+pBh)=af-g+pBf-h (3)

where «, 8 are numbers and f,g,h are functions in Lo(a,b). This inner product also induces a norm
(’length’ of vector f) as follows
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Since there is an infinite number of linearly independent functions which satisfy condition (1), this is an
infinite dimensional vector space.

2 The Vector Space P,

We now consider the set of all polynomials of degree less than equal to n over the interval [—1,1]. We
will see how to generalize the analysis to an arbitrary interval [a,b]. It is easy to see that the set of all
such polynomials also forms a vector space, which we denote as P,. This is clearly a sub-space of the
vector space Lo(—1,1). It is also easy to see that this is an n + 1 dimensional vector space, since the set
{1,2,2% 23,...,2"}, which is linearly independent, spans the space (any such polynomial can be written
as a linear combination of these functions) and therefore forms a basis, since any such polynomial can be
expressed as

() = co + 17 + c22? + 32 + ... + cpa” (5)

However, this basis is not orthonormal. We can construct an orthonormal basis out of this basis using
Gram-Schmidt orthonormalization. Let us call the basis {¢g = 1,¢1 = x,¢0 = 22, ..,¢, = 2"} the
‘natural’ basis, since we naturally view a polynomial of degree n as an expansion in these simple functions.



Let us denote the orthonormal basis as {FPy, Py, .., P,}. Following the Gram-Schmidt orthonormalization
procedure, we choose the first unit 'vector’ as ¢ itself, normalized
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where
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Next, we add the vector ¢; and project out its component along the unit-vector Fy. Let us call this
new vector ¥
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since ¢1 - Py = 0. Then, the second unit vector is just
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Next, we take ¢9 and project out its components along Py and P; to give o
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Then, we get the unit vector P» as
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We can similarly recursively generate the unit vectors Ps, Py, .., P,,. These orthonormal functions defined
over the interval [—1,1] are just the ’special’ functions known as Legendre Polynomials. The next two
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3 Polynomial Approximation

orthonormal vectors in this set are

Consider an arbitrary function f belonging to La(—1,1). Say, we wish to approximate this function by a
polynomial of degree n. To do this, of all the polynomials of degree less than equal to n, we wish to pick



the one which is ’closest’ to the function f. Since each such polynomial belongs to the subspace P, of
the vector space La(—1,1), the natural measure of ’closeness’ is the norm ||f — p,|| where p,, € P,,, which
can be thought of as the ’distance’ between functions f and p,. The mathematical problem then reduces
to determining p,, € P,, which minimises this norm. Since P,, is a subspace of Ly(—1,1). the element of
P, which minimises this norm is just the orthogonal projection of the vector f on to P,. This is just the
function/vector f, given by
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where
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The strategy can be extended to an arbitrary interval x € [a,b]. First, we define a new variable y as
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This maps y to the interval [—1, 1]. Next, we define the function
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This is defined over [—1,1]. We can approximate g(y) by its orthogonal projection over Py, gi. Then, the
required polynomial approximation for f is
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4 Generalizing the Inner Product: The Weight Function

The definition (2) of the inner product can be generalized as follows: Given a non-negative function w(z)
over the interval [a, b], we can generalize the definition of inner product to
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It is easy to check that this satisfies the linearity condition and also induces positive norm (because of the
positivity of w(x)). For different values of a and b and choices of the 'weight function’ w, the Gram-Schmidt
orthonormalization leads to different families of orthogonal polynomials (Hermite, Laguerre, Chebyshev,
etc.). From the point of view of polynomial approximation, a given weight function could include the
information about certain regions where we wish the polynomial approximation to be more accurate. The
choice of w(x) =1 treats the entire domain democratically. However, say we wish to be more precise near
the middle of the interval. Then, a weight function which is maximum in the middle of the interval will
yield the desired approximation.

Of particular importance is the choice w(z) = 1/v/1 — 2 corresponding to the interval [—1, 1]. This choice
generates the Chebyshev Polynomials, which have the special 'min-max’ property, making zeros of these
polynomials the preferred choice of interpolation points in the problem of polynomial interpolation.



