
Orthogonal Polynomials and Polynomial Approximation to

Functions

1 The Vector Space L2(a, b)

The vector space L2(a, b) is the set of all square-integrable functions defined over the interval [a, b]. If a
function f ∈ L2(a, b), then ∫ b

a
dx f(x) <∞ (1)

Given two such function f and g, it is easy to see that a linear combination c1f+c2g also satisfies condition
(1). We can define a ’zero’ function f0 such that f0(x) = 0 ∀ x ∈ [a, b]. Then, it is easy to see that the set
of all such functions form a vector space. We can further define an inner-product on this space as follows

f · g =

∫ b

a
dx f(x)g(x) (2)

It is easy to check that this satisfies the linearity condition for the inner product

f · (αg + βh) = αf · g + βf · h (3)

where α, β are numbers and f, g, h are functions in L2(a, b). This inner product also induces a norm
(’length’ of vector f) as follows

||f ||2 = f · f (4)

=

∫ b

a
dx f2(x)

Since there is an infinite number of linearly independent functions which satisfy condition (1), this is an
infinite dimensional vector space.

2 The Vector Space Pn
We now consider the set of all polynomials of degree less than equal to n over the interval [−1, 1]. We
will see how to generalize the analysis to an arbitrary interval [a, b]. It is easy to see that the set of all
such polynomials also forms a vector space, which we denote as Pn. This is clearly a sub-space of the
vector space L2(−1, 1). It is also easy to see that this is an n + 1 dimensional vector space, since the set
{1, x, x2, x3, ..., xn}, which is linearly independent, spans the space (any such polynomial can be written
as a linear combination of these functions) and therefore forms a basis, since any such polynomial can be
expressed as

pn(x) = c0 + c1x+ c2x
2 + c3x

3 + ...+ cnx
n (5)

However, this basis is not orthonormal. We can construct an orthonormal basis out of this basis using
Gram-Schmidt orthonormalization. Let us call the basis {φ0 = 1, φ1 = x, φ2 = x2, .., φn = xn} the
’natural’ basis, since we naturally view a polynomial of degree n as an expansion in these simple functions.
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Let us denote the orthonormal basis as {P0, P1, .., Pn}. Following the Gram-Schmidt orthonormalization
procedure, we choose the first unit ’vector’ as φ0 itself, normalized

P0 =
1

||φ0||
φ0

=
1√
2

where

||φ0||2 = φ0 · φ0

=

∫
−1

1dx 1

= 2

Next, we add the vector φ1 and project out its component along the unit-vector P0. Let us call this
new vector ψ1

ψ1 = φ1 − (φ1 · P0) P0

= φ1

since φ1 · P0 = 0. Then, the second unit vector is just

P1 =
1

||ψ1||
ψ1

=

√
3

2
x

Next, we take φ2 and project out its components along P0 and P1 to give ψ2

ψ2 = φ2 − (φ2 · P1) P1 − (φ2 · P0) P0

= φ2 − (φ2 · P0) P0

= x2 − 1

3

Then, we get the unit vector P2 as

P2 =
1

||ψ2||
ψ2

=

√
5

8
(3x2 − 1)

We can similarly recursively generate the unit vectors P3, P4, .., Pn. These orthonormal functions defined
over the interval [−1, 1] are just the ’special’ functions known as Legendre Polynomials. The next two
orthonormal vectors in this set are

P3 =
1

2

√
7

2
(5x3 − 3x)

P4 =
1

8

√
9

2
(35x4 − 30x2 + 3)

3 Polynomial Approximation

Consider an arbitrary function f belonging to L2(−1, 1). Say, we wish to approximate this function by a
polynomial of degree n. To do this, of all the polynomials of degree less than equal to n, we wish to pick
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the one which is ’closest’ to the function f . Since each such polynomial belongs to the subspace Pn of
the vector space L2(−1, 1), the natural measure of ’closeness’ is the norm ||f − pn|| where pn ∈ Pn, which
can be thought of as the ’distance’ between functions f and pn. The mathematical problem then reduces
to determining pn ∈ Pn which minimises this norm. Since Pn is a subspace of L2(−1, 1). the element of
Pn which minimises this norm is just the orthogonal projection of the vector f on to Pn. This is just the
function/vector f⊥ given by

f⊥ =
n∑

i=0

(f · Pi) Pi

where

f · Pi =

∫ 1

−1
dx f(x)Pi(x) (6)

The strategy can be extended to an arbitrary interval x ∈ [a, b]. First, we define a new variable y as
follows

y =

(
2

b− a

)
x+

(
a+ b

a− b

)
(7)

This maps y to the interval [−1, 1]. Next, we define the function

g(y) = f

[(
b− a

2

)
y +

(
a+ b

2

)]
(8)

This is defined over [−1, 1]. We can approximate g(y) by its orthogonal projection over Pn, g⊥. Then, the
required polynomial approximation for f is

f⊥ = g⊥

[(
2

b− a

)
x+

(
a+ b

a− b

)]
(9)

4 Generalizing the Inner Product: The Weight Function

The definition (2) of the inner product can be generalized as follows: Given a non-negative function w(x)
over the interval [a, b], we can generalize the definition of inner product to

f · g =

∫ b

a
dx w(x)f(x)g(x) (10)

It is easy to check that this satisfies the linearity condition and also induces positive norm (because of the
positivity of w(x)). For different values of a and b and choices of the ’weight function’ w, the Gram-Schmidt
orthonormalization leads to different families of orthogonal polynomials (Hermite, Laguerre, Chebyshev,
etc.). From the point of view of polynomial approximation, a given weight function could include the
information about certain regions where we wish the polynomial approximation to be more accurate. The
choice of w(x) = 1 treats the entire domain democratically. However, say we wish to be more precise near
the middle of the interval. Then, a weight function which is maximum in the middle of the interval will
yield the desired approximation.
Of particular importance is the choice w(x) = 1/

√
1− x2 corresponding to the interval [−1, 1]. This choice

generates the Chebyshev Polynomials, which have the special ’min-max’ property, making zeros of these
polynomials the preferred choice of interpolation points in the problem of polynomial interpolation.
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