Algorithms to solve Newton's Laws on a Computer

1 The Euler Algorithm

Newtons' Second Law of motion relates the second derivatives of the position coordinates of a particle to its acceleration components, which are, in general, functions of its position, velocity and time. Consider a particle in one dimension, with position coordinate x measured with respect to a suitable origin. Newton's Second Law for this particle then reduces to the general form

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}=a(x, v, t) \tag{1}
\end{equation*}
$$

where $v=d x / d t$ is the velocity of the particle. This second order differential equation can be written as a pair of coupled first order differential equations in the position $x(t)$ and velocity $v(t)$ of the particle

$$
\begin{align*}
\frac{d x}{d t} & =v \\
\frac{d v}{d t} & =a(x, v, t) \tag{2}
\end{align*}
$$

Given the position $x\left(t_{0}\right)$ and velocity $v\left(t_{0}\right)$ at some instant t_{0}, the position and velocity at any other instant of time are uniquely determined. There are many algorithms that can be implemented on a computer to compute $x\left(t_{f}\right)$ and $v\left(t_{f}\right)$ at instant t_{f}. These rely on 'slicing' the finite time interval $t_{f}-t_{0}$ into N 'small' intervals of size $\Delta t=\left(t_{f}-t_{0}\right) / N$, such that given $x(t)$ and $v(t)$ at any intermediate instant between t_{0} and $t_{f}, x(t+\Delta t)$ and $v(t+\Delta t)$ can be determined to some predefined accuracy. Such algorithms then allow one to 'hop' from one instant to another, starting at t_{0} and ending at t_{f}. These algorithms rely on the Taylor expansion of a function f of t about a point t

$$
\begin{equation*}
f(t+\Delta t)=f(t)+\Delta t \dot{f}(t)+\frac{\Delta t^{2}}{2!} \ddot{f}(t)+\frac{\Delta t^{3}}{3!} \dddot{f}(t)+\frac{\Delta t^{4}}{4!} \dddot{f}(t)+\ldots \tag{3}
\end{equation*}
$$

where $\dot{f}=d f / d t, \ddot{f}=d^{2} f / d t^{2}, \dddot{f}=d^{3} f / d t^{3}$, etc. Any given algorithm involves the effective truncation of this series after a finite number of terms, introducing an error of a given order. The Euler algorithm involves truncating the series after the term of order Δt, introducing an error of order Δt^{2} or higher

$$
\begin{equation*}
f(t+\Delta t)=f(t)+\Delta t \dot{f}(t)+\mathcal{O}\left(\Delta t^{2}\right) \tag{4}
\end{equation*}
$$

Applied to the position coordinate $x(t)$ and velocity $v(t)$, this algorithm gives

$$
\begin{align*}
x(t+\Delta t) & =x(t)+\Delta t \dot{x}(t)+\mathcal{O}\left(\Delta t^{2}\right) \\
& =x(t)+\Delta t v(t)+\mathcal{O}\left(\Delta t^{2}\right) \\
v(t+\Delta t) & =v(t)+\Delta t \dot{v}(t)+\mathcal{O}\left(\Delta t^{2}\right) \\
& =v(t)+\Delta t a(t)+\mathcal{O}\left(\Delta t^{2}\right) \tag{5}
\end{align*}
$$

Since the Second Law gives the acceleration at instant t as a function of position and velocity at that instant, therefore, the Euler Algorithm reduces to

$$
\begin{aligned}
& x(t+\Delta t)=x(t)+\Delta t \quad v(t) \\
& v(t+\Delta t)=v(t)+\Delta t \quad a[x(t), v(t), t]
\end{aligned}
$$

Clearly, given $x(t)$ and $v(t)$, this algorithm allows us to determine $x(t+\Delta t)$ and $v(t+\Delta t)$ up to accuracy of order Δt in each 'hop', introducing an error of order Δt^{2}. However, after N such steps, the cumulative error is of order $N \Delta t^{2}$ which is of order $\left(t_{f}-t_{0}\right) \Delta t$. Clearly, this error need not be small for a large enough time interval $\left(t_{f}-t_{i}\right)$.

2 The Verlet Algorithm

If the acceleration of the particle is only a function of its position, the Verlet Algorithm is an improvement over the Euler Algorithm. Apart from being accurate up to order Δt^{2} (that is, the error in each step is order Δt^{3} or higher), it has some special mathematical properties ${ }^{1}$, which make it especially suitable when systems are to be evolved for long durations of time. The Verlet Algorithm is a three-step algorithm, unlike the Euler Algorithm, which is a two-step algorithm. Given the position and velocity at instant t, it computes these at $t+\Delta t$ at a higher accuracy (relative to the Euler Algorithm) by involving the values of x and v at the intermediate instant $t+\Delta t / 2$

$$
\begin{aligned}
x(t+\Delta t / 2) & =x(t)+\frac{\Delta t}{2} v(t) \\
v(t+\Delta t) & =v(t)+\Delta t a(t+\Delta t / 2) \\
x(t+\Delta t) & =x(t+\Delta t / 2)+\frac{\Delta t}{2} v(t+\Delta t)
\end{aligned}
$$

In the second step, the acceleration at instant $t+\Delta t / 2$ is computed by using the value of the position at this instant (since the acceleration is a function of position only). A key idea used in this algorithm is that given a function at some instant t, its value at instant $t+\Delta t$ is known to accuracy Δt^{2}, if its derivative is known at the half-step $t+\Delta t / 2$

$$
\begin{equation*}
f(t+\Delta t)=f(t)+\Delta t \dot{f}(t+\Delta t / 2)+\mathcal{O}\left(\Delta t^{3}\right) \tag{6}
\end{equation*}
$$

This claim can be proved by expanding $\dot{f}(t+\Delta t / 2)$ in a Taylor series about t and retaining terms up to order Δt only

$$
\begin{equation*}
\dot{f}(t+\Delta t / 2)=\dot{f}(t)+\frac{\Delta t}{2} \ddot{f}(t)+\mathcal{O}\left(\Delta t^{2}\right) \tag{7}
\end{equation*}
$$

Substituting this in eqn.(6), we see that since we have Δt as a coefficient of $\dot{f}(t+\Delta t / 2)$, the $\mathcal{O}\left(\Delta t^{2}\right)$ error will result in an effective $\mathcal{O}\left(\Delta t^{3}\right)$ error

$$
\begin{align*}
f(t+\Delta t) & =f(t)+\Delta t\left[\dot{f}(t)+\frac{\Delta t}{2} \ddot{f}(t)+\mathcal{O}\left(\Delta t^{2}\right)\right] \tag{8}\\
& =f(t)+\Delta t \dot{f}(t)+\frac{\Delta t^{2}}{2} \ddot{f}(t)+\mathcal{O}\left(\Delta t^{3}\right) \tag{9}
\end{align*}
$$

which we identify as the standard Taylor expansion accurate up to order Δt^{2}. Given this, we notice that in the three-step Verlet Algorithm, the second step is accurate, by itself, up to order Δt^{2} (since $a(t)=\dot{v}(t)$). Further, taken together, the first and third step are accurate up to order Δt^{2}. To see this, we substitute the first step in the third, to get

$$
\begin{align*}
x(t+\Delta t) & =x(t+\Delta t / 2)+\frac{\Delta t}{2} v(t+\Delta t) \\
& =x(t)+\frac{\Delta t}{2} v(t)+\frac{\Delta t}{2} v(t+\Delta t) \tag{10}
\end{align*}
$$

[^0]Expanding $v(t+\Delta t)$ in a Taylor series, we get

$$
\begin{align*}
x(t+\Delta t) & =x(t)+\frac{\Delta t}{2} v(t)+\frac{\Delta t}{2}\left[v(t)+\Delta t a(t)+\mathcal{O}\left(\Delta t^{2}\right)\right] \\
& =x(t)+\frac{\Delta t}{2} v(t)+\frac{\Delta t}{2} v(t)+\frac{\Delta t^{2}}{2} a(t)+\mathcal{O}\left(\Delta t^{3}\right) \\
& =x(t)+\Delta t v(t)+\frac{\Delta t^{2}}{2} a(t)+\mathcal{O}\left(\Delta t^{3}\right) \tag{11}
\end{align*}
$$

which is the Taylor expansion for $x(t+\Delta t)$ correct up to order Δt^{2}.

3 The Second Order Runge Kutta Algorithm

The Second Order Runge Kutta (RK) Algorithm is a powerful algorithm that computes position and velocity up to order Δt^{2} accuracy, for arbitrary acceleration functions. It relies on computing a function by using information about its derivative at a half-step, as in equation (6). Let us start by computing the position at instant $t+\Delta t$

$$
\begin{equation*}
x(t+\Delta t)=x(t)+\Delta t v(t+\Delta t / 2)+\mathcal{O}\left(\Delta t^{3}\right) \tag{12}
\end{equation*}
$$

In the above equation, we can expand $v(t+\Delta t / 2)$ in a Taylor series up to order Δt, leaving an over all error of order Δt^{3}, since $v(t+\Delta t / 2)$ comes with Δt as coefficient

$$
\begin{equation*}
v(t+\Delta t / 2)=v(t)+\frac{\Delta t}{2} a(t) \tag{13}
\end{equation*}
$$

Since we know the acceleration as a function of position, velocity and time, given the position and velocity at time t allows us to compute $v(t+\Delta t / 2)$ in the above equation, which we then use in the equation for $x(t+\Delta t)$. Then, the position at $t+\Delta t$ is determined as follows

$$
\begin{equation*}
x(t+\Delta t)=x(t)+\Delta t\left[v(t)+\frac{\Delta t}{2} a[x(t), v(t), t]\right] \tag{14}
\end{equation*}
$$

Next, we compute the velocity at $t+\Delta t$

$$
\begin{equation*}
v(t+\Delta t)=v(t)+\Delta t a(t+\Delta t / 2)+\mathcal{O}\left(\Delta t^{3}\right) \tag{15}
\end{equation*}
$$

Now,

$$
\begin{equation*}
a(t+\Delta t / 2)=a[x(t+\Delta t / 2), v(t+\Delta t / 2), t+\Delta t / 2] \tag{16}
\end{equation*}
$$

To compute the acceleration at $t+\Delta t / 2$, we can expand $x(t+\Delta t / 2)$ and $v(t+\Delta t / 2)$ (on which $a(t+\Delta t / 2)$ depends on) up to order Δt, since this will result in an effective error of order Δt^{3} (since $a(t+\Delta t / 2)$ has Δt as coefficient). Then, we use

$$
\begin{align*}
x(t+\Delta t / 2) & =x(t)+\frac{\Delta t}{2} v(t) \\
v(t+\Delta t / 2) & =v(t)+\frac{\Delta t}{2} a(t) \\
& =v(t)+\frac{\Delta t}{2} a[x(t), v(t), t] \tag{17}
\end{align*}
$$

Therefore, the velocity at $t+\Delta t$ is determined as follows

$$
\begin{equation*}
v(t+\Delta t)=v(t)+\Delta t a\left[x(t)+\frac{\Delta t}{2} v(t), v(t)+\frac{\Delta t}{2} a[x(t), v(t), t], t+\Delta t / 2\right] \tag{18}
\end{equation*}
$$

In a nutshell, the algorithm is

$$
\begin{aligned}
& x(t+\Delta t)=x(t)+\Delta t\left[v(t)+\frac{\Delta t}{2} a[x(t), v(t), t]\right] \\
& v(t+\Delta t)=v(t)+\Delta t a\left[x(t)+\frac{\Delta t}{2} v(t), v(t)+\frac{\Delta t}{2} a[x(t), v(t), t], t+\Delta t / 2\right]
\end{aligned}
$$

[^0]: ${ }^{1}$ It is symplectic, preserving phase space volumes. As a result, trajectories are bounded.

