Algorithms to solve Newton's Laws on a Computer

1 The Euler Algorithm

Newtons' Second Law of motion relates the second derivatives of the position coordinates of a particle to its acceleration components, which are, in general, functions of its position, velocity and time. Consider a particle in one dimension, with position coordinate x measured with respect to a suitable origin. Newton's Second Law for this particle then reduces to the general form

$$\frac{d^2x}{dt^2} = a(x,v,t) \tag{1}$$

where v = dx/dt is the velocity of the particle. This second order differential equation can be written as a pair of coupled first order differential equations in the position x(t) and velocity v(t) of the particle

$$\frac{dx}{dt} = v$$

$$\frac{dv}{dt} = a(x, v, t)$$
(2)

Given the position $x(t_0)$ and velocity $v(t_0)$ at some instant t_0 , the position and velocity at any other instant of time are uniquely determined. There are many algorithms that can be implemented on a computer to compute $x(t_f)$ and $v(t_f)$ at instant t_f . These rely on 'slicing' the finite time interval $t_f - t_0$ into N 'small' intervals of size $\Delta t = (t_f - t_0)/N$, such that given x(t) and v(t) at any intermediate instant between t_0 and t_f , $x(t + \Delta t)$ and $v(t + \Delta t)$ can be determined to some predefined accuracy. Such algorithms then allow one to 'hop' from one instant to another, starting at t_0 and ending at t_f . These algorithms rely on the Taylor expansion of a function f of t about a point t

$$f(t + \Delta t) = f(t) + \Delta t \ \dot{f}(t) + \frac{\Delta t^2}{2!} \ \ddot{f}(t) + \frac{\Delta t^3}{3!} \ \ddot{f}(t) + \frac{\Delta t^4}{4!} \ \ddot{f}(t) + \dots$$
(3)

where $\dot{f} = df/dt$, $\ddot{f} = d^2f/dt^2$, $\ddot{f} = d^3f/dt^3$, etc. Any given algorithm involves the effective truncation of this series after a finite number of terms, introducing an error of a given order. The Euler algorithm involves truncating the series after the term of order Δt , introducing an error of order Δt^2 or higher

$$f(t + \Delta t) = f(t) + \Delta t \ \dot{f}(t) + \mathcal{O}(\Delta t^2)$$
(4)

Applied to the position coordinate x(t) and velocity v(t), this algorithm gives

$$\begin{aligned} x(t + \Delta t) &= x(t) + \Delta t \ \dot{x}(t) + \mathcal{O}(\Delta t^2) \\ &= x(t) + \Delta t \ v(t) + \mathcal{O}(\Delta t^2) \\ v(t + \Delta t) &= v(t) + \Delta t \ \dot{v}(t) + \mathcal{O}(\Delta t^2) \\ &= v(t) + \Delta t \ a(t) + \mathcal{O}(\Delta t^2) \end{aligned}$$
(5)

Since the Second Law gives the acceleration at instant t as a function of position and velocity at that instant, therefore, the Euler Algorithm reduces to

$$\begin{split} x(t+\Delta t) &= x(t) + \Delta t \ v(t) \\ v(t+\Delta t) &= v(t) + \Delta t \ a \left[x(t), v(t), t \right] \end{split}$$

Clearly, given x(t) and v(t), this algorithm allows us to determine $x(t + \Delta t)$ and $v(t + \Delta t)$ up to accuracy of order Δt in each 'hop', introducing an error of order Δt^2 . However, after N such steps, the cumulative error is of order $N\Delta t^2$ which is of order $(t_f - t_0)\Delta t$. Clearly, this error need not be small for a large enough time interval $(t_f - t_i)$.

2 The Verlet Algorithm

If the acceleration of the particle is only a function of its position, the Verlet Algorithm is an improvement over the Euler Algorithm. Apart from being accurate up to order Δt^2 (that is, the error in each step is order Δt^3 or higher), it has some special mathematical properties ¹, which make it especially suitable when systems are to be evolved for long durations of time. The Verlet Algorithm is a three-step algorithm, unlike the Euler Algorithm, which is a two-step algorithm. Given the position and velocity at instant t, it computes these at $t + \Delta t$ at a higher accuracy (relative to the Euler Algorithm) by involving the values of x and v at the intermediate instant $t + \Delta t/2$

$$x(t + \Delta t/2) = x(t) + \frac{\Delta t}{2}v(t)$$
$$v(t + \Delta t) = v(t) + \Delta t \ a(t + \Delta t/2)$$
$$x(t + \Delta t) = x(t + \Delta t/2) + \frac{\Delta t}{2}v(t + \Delta t)$$

In the second step, the acceleration at instant $t + \Delta t/2$ is computed by using the value of the position at this instant (since the acceleration is a function of position only). A key idea used in this algorithm is that given a function at some instant t, its value at instant $t + \Delta t$ is known to accuracy Δt^2 , if its derivative is known at the half-step $t + \Delta t/2$

$$f(t + \Delta t) = f(t) + \Delta t \ \dot{f}(t + \Delta t/2) + \mathcal{O}(\Delta t^3)$$
(6)

This claim can be proved by expanding $\dot{f}(t + \Delta t/2)$ in a Taylor series about t and retaining terms up to order Δt only

$$\dot{f}(t + \Delta t/2) = \dot{f}(t) + \frac{\Delta t}{2}\ddot{f}(t) + \mathcal{O}(\Delta t^2)$$
(7)

Substituting this in eqn.(6), we see that since we have Δt as a coefficient of $\dot{f}(t + \Delta t/2)$, the $\mathcal{O}(\Delta t^2)$ error will result in an effective $\mathcal{O}(\Delta t^3)$ error

$$f(t + \Delta t) = f(t) + \Delta t \left[\dot{f}(t) + \frac{\Delta t}{2} \ddot{f}(t) + \mathcal{O}(\Delta t^2) \right]$$
(8)

$$= f(t) + \Delta t \ \dot{f}(t) + \frac{\Delta t^2}{2} \ \ddot{f}(t) + \mathcal{O}(\Delta t^3)$$
(9)

which we identify as the standard Taylor expansion accurate up to order Δt^2 . Given this, we notice that in the three-step Verlet Algorithm, the second step is accurate, by itself, up to order Δt^2 (since $a(t) = \dot{v}(t)$). Further, taken *together*, the first and third step are accurate up to order Δt^2 . To see this, we substitute the first step in the third, to get

$$x(t + \Delta t) = x(t + \Delta t/2) + \frac{\Delta t}{2} v(t + \Delta t)$$

= $x(t) + \frac{\Delta t}{2} v(t) + \frac{\Delta t}{2} v(t + \Delta t)$ (10)

¹It is symplectic, preserving phase space volumes. As a result, trajectories are bounded.

Expanding $v(t + \Delta t)$ in a Taylor series, we get

$$\begin{aligned} x(t+\Delta t) &= x(t) + \frac{\Delta t}{2} v(t) + \frac{\Delta t}{2} \left[v(t) + \Delta t a(t) + \mathcal{O}(\Delta t^2) \right] \\ &= x(t) + \frac{\Delta t}{2} v(t) + \frac{\Delta t}{2} v(t) + \frac{\Delta t^2}{2} a(t) + \mathcal{O}(\Delta t^3) \\ &= x(t) + \Delta t v(t) + \frac{\Delta t^2}{2} a(t) + \mathcal{O}(\Delta t^3) \end{aligned}$$
(11)

which is the Taylor expansion for $x(t + \Delta t)$ correct up to order Δt^2 .

3 The Second Order Runge Kutta Algorithm

The Second Order Runge Kutta (RK) Algorithm is a powerful algorithm that computes position and velocity up to order Δt^2 accuracy, for arbitrary acceleration functions. It relies on computing a function by using information about its derivative at a half-step, as in equation (6). Let us start by computing the position at instant $t + \Delta t$

$$x(t + \Delta t) = x(t) + \Delta t \ v(t + \Delta t/2) + \mathcal{O}(\Delta t^3)$$
(12)

In the above equation, we can expand $v(t + \Delta t/2)$ in a Taylor series up to order Δt , leaving an over all error of order Δt^3 , since $v(t + \Delta t/2)$ comes with Δt as coefficient

$$v(t + \Delta t/2) = v(t) + \frac{\Delta t}{2}a(t)$$
(13)

Since we know the acceleration as a function of position, velocity and time, given the position and velocity at time t allows us to compute $v(t + \Delta t/2)$ in the above equation, which we then use in the equation for $x(t + \Delta t)$. Then, the position at $t + \Delta t$ is determined as follows

$$x(t + \Delta t) = x(t) + \Delta t \left[v(t) + \frac{\Delta t}{2} a \left[x(t), v(t), t \right] \right]$$
(14)

Next, we compute the velocity at $t + \Delta t$

$$v(t + \Delta t) = v(t) + \Delta t \ a(t + \Delta t/2) + \mathcal{O}(\Delta t^3)$$
(15)

Now,

$$a(t + \Delta t/2) = a \left[x(t + \Delta t/2), v(t + \Delta t/2), t + \Delta t/2 \right]$$
(16)

To compute the acceleration at $t + \Delta t/2$, we can expand $x(t + \Delta t/2)$ and $v(t + \Delta t/2)$ (on which $a(t + \Delta t/2)$ depends on) up to order Δt , since this will result in an effective error of order Δt^3 (since $a(t + \Delta t/2)$ has Δt as coefficient). Then, we use

$$x(t + \Delta t/2) = x(t) + \frac{\Delta t}{2} v(t)$$

$$v(t + \Delta t/2) = v(t) + \frac{\Delta t}{2} a(t)$$

$$= v(t) + \frac{\Delta t}{2} a[x(t), v(t), t]$$
(17)

Therefore, the velocity at $t + \Delta t$ is determined as follows

$$v(t + \Delta t) = v(t) + \Delta t \ a \left[x(t) + \frac{\Delta t}{2} \ v(t), v(t) + \frac{\Delta t}{2} \ a \left[x(t), v(t), t \right], t + \Delta t/2 \right]$$
(18)

In a nutshell, the algorithm is

$$\begin{vmatrix} x(t+\Delta t) = x(t) + \Delta t \left[v(t) + \frac{\Delta t}{2} a \left[x(t), v(t), t \right] \right] \\ v(t+\Delta t) = v(t) + \Delta t \ a \left[x(t) + \frac{\Delta t}{2} v(t), v(t) + \frac{\Delta t}{2} a \left[x(t), v(t), t \right], t + \Delta t/2 \right] \end{vmatrix}$$