
Algorithms to solve Newton’s Laws on a Computer

1 The Euler Algorithm

Newtons’ Second Law of motion relates the second derivatives of the position coordinates of a particle to
its acceleration components, which are, in general, functions of its position, velocity and time. Consider a
particle in one dimension, with position coordinate x measured with respect to a suitable origin. Newton’s
Second Law for this particle then reduces to the general form

d2x

dt2
= a(x, v, t) (1)

where v = dx/dt is the velocity of the particle. This second order differential equation can be written as a
pair of coupled first order differential equations in the position x(t) and velocity v(t) of the particle

dx

dt
= v

dv

dt
= a(x, v, t) (2)

Given the position x(t0) and velocity v(t0) at some instant t0, the position and velocity at any other
instant of time are uniquely determined. There are many algorithms that can be implemented on a
computer to compute x(tf) and v(tf) at instant tf . These rely on ‘slicing’ the finite time interval tf − t0
into N ‘small’ intervals of size ∆t = (tf − t0)/N , such that given x(t) and v(t) at any intermediate instant
between t0 and tf , x(t+∆t) and v(t+∆t) can be determined to some predefined accuracy. Such algorithms
then allow one to ‘hop’ from one instant to another, starting at t0 and ending at tf . These algorithms rely
on the Taylor expansion of a function f of t about a point t

f(t + ∆t) = f(t) + ∆t ḟ(t) +
∆t2

2!
f̈(t) +

∆t3

3!

...
f (t) +

∆t4

4!

....
f (t) + ... (3)

where ḟ = df/dt, f̈ = d2f/dt2,
...
f = d3f/dt3, etc. Any given algorithm involves the effective truncation

of this series after a finite number of terms, introducing an error of a given order. The Euler algorithm
involves truncating the series after the term of order ∆t, introducing an error of order ∆t2 or higher

f(t + ∆t) = f(t) + ∆t ḟ(t) +O(∆t2) (4)

Applied to the position coordinate x(t) and velocity v(t), this algorithm gives

x(t + ∆t) = x(t) + ∆t ẋ(t) +O(∆t2)

= x(t) + ∆t v(t) +O(∆t2)

v(t + ∆t) = v(t) + ∆t v̇(t) +O(∆t2)

= v(t) + ∆t a(t) +O(∆t2) (5)

Since the Second Law gives the acceleration at instant t as a function of position and velocity at that
instant, therefore, the Euler Algorithm reduces to

1

x(t + ∆t) = x(t) + ∆t v(t)

v(t + ∆t) = v(t) + ∆t a [x(t), v(t), t]

Clearly, given x(t) and v(t), this algorithm allows us to determine x(t + ∆t) and v(t + ∆t) up to accuracy
of order ∆t in each ‘hop’, introducing an error of order ∆t2. However, after N such steps, the cumulative
error is of order N∆t2 which is of order (tf − t0)∆t. Clearly, this error need not be small for a large enough
time interval (tf − ti).

2 The Verlet Algorithm

If the acceleration of the particle is only a function of its position, the Verlet Algorithm is an improvement
over the Euler Algorithm. Apart from being accurate up to order ∆t2 (that is, the error in each step
is order ∆t3 or higher), it has some special mathematical properties 1, which make it especially suitable
when systems are to be evolved for long durations of time. The Verlet Algorithm is a three-step algorithm,
unlike the Euler Algorithm, which is a two-step algorithm. Given the position and velocity at instant t, it
computes these at t+ ∆t at a higher accuracy (relative to the Euler Algorithm) by involving the values of
x and v at the intermediate instant t + ∆t/2

x(t + ∆t/2) = x(t) +
∆t

2
v(t)

v(t + ∆t) = v(t) + ∆t a(t + ∆t/2)

x(t + ∆t) = x(t + ∆t/2) +
∆t

2
v(t + ∆t)

In the second step, the acceleration at instant t + ∆t/2 is computed by using the value of the position at
this instant (since the acceleration is a function of position only). A key idea used in this algorithm is that
given a function at some instant t, its value at instant t + ∆t is known to accuracy ∆t2, if its derivative is
known at the half-step t + ∆t/2

f(t + ∆t) = f(t) + ∆t ḟ(t + ∆t/2) +O(∆t3) (6)

This claim can be proved by expanding ḟ(t + ∆t/2) in a Taylor series about t and retaining terms up to
order ∆t only

ḟ(t + ∆t/2) = ḟ(t) +
∆t

2
f̈(t) +O(∆t2) (7)

Substituting this in eqn.(6), we see that since we have ∆t as a coefficient of ḟ(t+ ∆t/2), the O(∆t2) error
will result in an effective O(∆t3) error

f(t + ∆t) = f(t) + ∆t

[
ḟ(t) +

∆t

2
f̈(t) +O(∆t2)

]
(8)

= f(t) + ∆t ḟ(t) +
∆t2

2
f̈(t) +O(∆t3) (9)

which we identify as the standard Taylor expansion accurate up to order ∆t2. Given this, we notice that in
the three-step Verlet Algorithm, the second step is accurate, by itself, up to order ∆t2 (since a(t) = v̇(t)).
Further, taken together, the first and third step are accurate up to order ∆t2. To see this, we substitute
the first step in the third, to get

x(t + ∆t) = x(t + ∆t/2) +
∆t

2
v(t + ∆t)

= x(t) +
∆t

2
v(t) +

∆t

2
v(t + ∆t) (10)

1It is symplectic, preserving phase space volumes. As a result, trajectories are bounded.

2

Expanding v(t + ∆t) in a Taylor series, we get

x(t + ∆t) = x(t) +
∆t

2
v(t) +

∆t

2

[
v(t) + ∆t a(t) +O(∆t2)

]
= x(t) +

∆t

2
v(t) +

∆t

2
v(t) +

∆t2

2
a(t) +O(∆t3)

= x(t) + ∆t v(t) +
∆t2

2
a(t) +O(∆t3) (11)

which is the Taylor expansion for x(t + ∆t) correct up to order ∆t2.

3 The Second Order Runge Kutta Algorithm

The Second Order Runge Kutta (RK) Algorithm is a powerful algorithm that computes position and
velocity up to order ∆t2 accuracy, for arbitrary acceleration functions. It relies on computing a function
by using information about its derivative at a half-step, as in equation (6). Let us start by computing the
position at instant t + ∆t

x(t + ∆t) = x(t) + ∆t v(t + ∆t/2) +O(∆t3) (12)

In the above equation, we can expand v(t + ∆t/2) in a Taylor series up to order ∆t, leaving an over all
error of order ∆t3, since v(t + ∆t/2) comes with ∆t as coefficient

v(t + ∆t/2) = v(t) +
∆t

2
a(t) (13)

Since we know the acceleration as a function of position, velocity and time, given the position and velocity
at time t allows us to compute v(t + ∆t/2) in the above equation, which we then use in the equation for
x(t + ∆t). Then, the position at t + ∆t is determined as follows

x(t + ∆t) = x(t) + ∆t

[
v(t) +

∆t

2
a [x(t), v(t), t]

]
(14)

Next, we compute the velocity at t + ∆t

v(t + ∆t) = v(t) + ∆t a(t + ∆t/2) +O(∆t3) (15)

Now,
a(t + ∆t/2) = a [x(t + ∆t/2), v(t + ∆t/2), t + ∆t/2] (16)

To compute the acceleration at t+∆t/2, we can expand x(t+∆t/2) and v(t+∆t/2) (on which a(t+∆t/2)
depends on) up to order ∆t, since this will result in an effective error of order ∆t3 (since a(t + ∆t/2) has
∆t as coefficient). Then, we use

x(t + ∆t/2) = x(t) +
∆t

2
v(t)

v(t + ∆t/2) = v(t) +
∆t

2
a(t)

= v(t) +
∆t

2
a [x(t), v(t), t] (17)

Therefore, the velocity at t + ∆t is determined as follows

v(t + ∆t) = v(t) + ∆t a

[
x(t) +

∆t

2
v(t), v(t) +

∆t

2
a [x(t), v(t), t] , t + ∆t/2

]
(18)

3

In a nutshell, the algorithm is

x(t + ∆t) = x(t) + ∆t

[
v(t) +

∆t

2
a [x(t), v(t), t]

]
v(t + ∆t) = v(t) + ∆t a

[
x(t) +

∆t

2
v(t), v(t) +

∆t

2
a [x(t), v(t), t] , t + ∆t/2

]

4

