
Newtonian dynamics of a Lennard Jones Fluid

A Lennard Jones fluid is a system of particles interacting via the Lennard Jones interaction, for which
the potential energy between a pair of particles has the form
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where ε is an energy scale (minimum value of the potential energy) and σ is a length scale (equilibrium
separation is 21/6σ). Given this pair-potential energy function, the force exerted by the ith particle on the
jth particle is
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where ~rij = ~rj − ~ri. Clearly, this force is attractive for rij > 21/6σ and repulsive for rij < 21/6σ. There are
natural length (σ), energy (ε) and mass (m) scales in this system. Therefore, it is natural to measure all
lengths, energies and masses in units of these scales. These natural scales further induce natural velocity
and time scales
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The equation of motion for the ith particle is
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Introduce dimensionless position and time variables
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In terms of these dimensionless variables, the equations reduce to
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The dimensionless pair potential energy function (pair potential energy measured in units of ε) reduces to
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We anticipate that in thermal equilibrium, the mean kinetic energy per particle of this system of
particles is
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and vi is the speed of the ith particle. Defining dimensionless velocities ~̃ui as
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is dimensionless mean kinetic energy (mean kinetic energy measured in units of natural energy scale ε).
This system has a natural temperature scale
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It is natural to measure temperature in units of T0. Then, we define a dimensionless temperature
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Then, it follows from (??) that
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We consider a two-dimensional system of N particles interacting via this interaction. This compu-
tational exercise simulates the dynamics of this system using Newton’s Laws, which are implemented
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through the Verlet Algorithm. The Verlet algorithm evolves the (dimensionless) position and velocity of
every particle according to
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where ~̃ai is the dimesnionless acceleration of the ith particle, given by
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This computational exercise involves giving initial positions and velocities to the system of particles,
evolving it till equilibrium is attained, and then measuring the speed distribution of particles. Since the
kinetic energy, and not the total energy is a measure of the temperature of the system (in equilibrium),
it is not possible to predict what temperature the system will equilibriate to, since the kinetic energy
will change with time. Then, as the state of the system evolves with time, its mean kinetic energy is to
be monitored, till it reaches a steady value, apart from fluctuations about this mean value. Given this
temperature, we will measure the speed distribution of the particles. Statistical mechanics predicts that
this speed distribution is Maxwellian, even for an interacting system. For this two-dimensional system, the
Maxwell speed distribution is given by
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where P (v)dv is the probability that the speed of a particle lies between v and v + dv. Expressing this in
terms of dimensionless speed ũ = v/v0, we get
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where T̃ is the dimensionless temperature. Once the equilibrium is established and the equilibrium tem-
perature T̃ computed, we check if the system satisfies the speed distribution given by (19).

• Start the system with the positions of particles placed in a regular pattern in a two-dimesnional box
of length L (measured in units of natural length scale σ). Generate the velocities using a normal
(Gaussian) distribution with zero mean and unit standard deviation. What is the significance of this
initial velocity distribution?

• When evolving the system through the Verlet algorithm, the acceleration of every particle needs
to be computed. This will be a vector sum of contributions due to forces exerted by all the other
particles. In principle, all particles will exert forces on each other. However, since the interaction
between particles falls rapidly beyond length scale σ, it is useful to put a ‘cut-off’ beyond a certain
distance rc. This cut-off can be a few times σ. Then, to determine the acceleration of any particle,
loop over all the other particles. If the distance between a given pair is less than rc, take account the
effect of that particle on the acceleration. Else, ignore the contribution.

• In addition to inter-particle interaction, we need to consider the interaction of each particle with the
walls of the enclosing area. As before, we could make a particle elastically ‘bounce off’ the walls.
However, it is useful to avoid walls altogether, since they introduce additional, entropic interactions,
whereas in this exercise we are interested in the effect of interactions between particles on their
aggregate, macroscopic behaviour. So, we get rid of the walls altogether. First, we put the particles
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in a square box of side L. Next, we turn the square (which has boundaries) into a torus (which does
not). This is achieved by forst ‘rolling’ the square into a cylinder, and then joining the opposite ends
of the cylinder to form a torus. Mathematically, this is the same as ‘identifying’ the opposite edges of
the square. That is, if we set up a cordinate system (x, y) at one corner, the edge x = L is identified
as x = 0 (rolling into a cylinder) and the edge y = L identified as y = 0 (joining the opposite circular
faces of the cylinder). The way this is enforced on the particles is as follows: given coordinates (x, y)
of a particle, if say x is such that x > L, force it to become x→ x−L . If, on the other hand x < 0,
force it to become x → x + L. Same for coordinate y. This is sometimes referred to as imposing
‘periodic boundary conditions’, though visualising on a torus is more useful. The particles will then
move around and interact on a torus which does not have boundaries.

• The distance between a pair of particles is effected after imposing periodic boundary conditions.
For instance, consider two particles with coordinates (L/10, y) and (9L/10, y) for any y within the
box. Naively, one will compute the distance between them to be 8L/10. But, given they are on a
torus, the correct distance is 2L/10 (why?). The separation between the particles is thus non-trivial
in this topology. To evaluate the correct separation (used to determine accelerations), implement
the following: say, the displacement between two particles is evaluated to be ~r = xî + yĵ. Then,
if |x| > 0.5L, then implement x → x − L × sgn(x) where sgn(x) = 1 if x > 0 and −1 if x < 0
(‘sign’ function). Same for y. Try to understand the significance of this transformation. This is to
be implemented when the accelerations are being evaluated.

• Generating the velocities according to a Gaussian distribution with zero mean does not guarantee
that the total momentum of the system is precisely zero (because of the finite sample size). To ensure
it is, calculate the total momentum of the particles after the velocity initialization, calculate the CM
velocity and subtract it from velocity of each particle so that the total momentum in forced to be zero
(if it is not, the particles will experience a net drift since there are no walls to ‘kill’ the momentum).

• To check for accuracy, monitor the conservation of the total energy of the system. This will involve
computing the potential energy of the system at every step. The total (dimensionless) potential
energy of the system is
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Computing this will also involve calculating the distances between particles. As before, only distances
less than rc are to be considered. However, to avoid generating singular forces arising due to abruptly
‘chopping off’ the potential energy for any pair beyond rc, a new pair potential energy function is
introduced

ũc(r̃ij) = ũij(r̃ij)− ũij(r̃c) (21)

which involves subtracting the contribution at r = rc. This will make the potential energy function
continuous at r = rc, avoiding singular forces.

• Plot the mean kinetic energy per particle as a function of time and observe the time after it becomes
steady (apart from fluctuations). To measure this steady temperature, calculate the mean kinetic
energy at every time step (or every few time steps) after this equilibriation time has been reached
and calculate the average of these values.

• After equilibriation time, gather data at every time step (or every few time steps) of the speeds of the
particles. Plot a histogram of this data and check if it agrees with (19) where T̃ is the equilibrium
temperature (measured above).
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