Applications of Fourier Integral Transform

A. Gupta

¹ Department of Physics St. Stephen's College

Outline

- Fourier Integral Representation
- Quantum Mechanics
 - Postulates
 - Position vs Momentum
 - Solving Schrodinger Equation
- Wave Equation
 - Warm Up: Forced Harmonic Oscillator
 - 1D Wave Equation With Source
 - 1D Homogeneous Wave Equation
- Diffusion Equation

Fourier Integral Transform

Fourier Integral Transform:

$$f(x) = \int_{-\infty}^{\infty} \frac{dk}{\sqrt{2\pi}} \, \tilde{f}(k) \, e^{ikx}$$

Inverse Transform:

$$\tilde{f}(k) = \int_{-\infty}^{\infty} \frac{dx}{\sqrt{2\pi}} f(x) e^{-ikx}$$

Fourier Integral Representation

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \ e^{ikx} \int_{-\infty}^{\infty} dx' \ f(x') \ e^{-ikx'}$$

Fourier Integral Representation of Dirac Delta Function

Fourier Integral transfrom of the Dirac Delta function:

$$f(x) = \delta (x - x_0)$$

$$\tilde{f}(k) = \int_{-\infty}^{\infty} \frac{dx}{\sqrt{2\pi}} \, \delta(x - x_0) \, e^{-ikx}
= \frac{1}{\sqrt{2\pi}} e^{-ikx_0}$$

It then follows that

$$\delta(x - x_0) = \int_{-\infty}^{\infty} \frac{dk}{\sqrt{2\pi}} \tilde{f}(k) e^{ikx}$$
$$= \int_{-\infty}^{\infty} \frac{dk}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} e^{-ikx_0} e^{ikx}$$

Fourier Representation of Dirac Delta Function

$$\delta(x-x_0)=\int_{-\infty}^{\infty}\frac{dk}{2\pi}\;e^{ik(x-x_0)}$$

Problem

Consider the sequence of functions

$$\delta_n(x) = \left\{ \begin{array}{ll} n, & |x| < 1/2n \\ 0, & |x| > 1/2n \end{array} \right.$$

Expressing $\delta_n(x)$ as a Fourier Integral, show that

$$\delta(x) = \lim_{n \to \infty} \delta_n(x)$$
$$= \int_{-\infty}^{\infty} \frac{dk}{2\pi} e^{ikx}$$

(A few) Postulates of Quantum Mechanics

- The state of a particle is decribed by a square-integrble complex function, the wavefunction $\psi(x)$.
- If a measurment of position is made, the probability of detecting the particle between x and x + dx is

$$P(x) dx = \frac{|\psi(x)|^2}{\int_{-\infty}^{\infty} dx \ |\psi(x)|^2} dx$$

The result of momentum measurement is encoded in the 'momentum-space wavefunction' $\tilde{\psi}(p)$ which is the Fourier Integral Transform of $\psi(x)$

$$\tilde{\psi}(p) = \int_{-\infty}^{\infty} \frac{dx}{\sqrt{2\pi\hbar}} \psi(x) e^{-ipx/\hbar}$$

where $\hbar = h/2\pi$. If the momentum of the particle (whose wavefunction is $\psi(x)$ is measured, the probability of measuring momentum between p and p + dp is given by

$$ilde{P}(p) dp = rac{\left| ilde{\psi}(p)
ight|^2}{\int_{-\infty}^{\infty} dp \, \left| ilde{\psi}(p)
ight|^2} dp$$

The wavefunction eveolves with time according to Schrodinger Equation

$$i\hbar \frac{\partial \psi(x,t)}{\partial t} = -\frac{\hbar^2}{2} \frac{\partial^2 \psi(x,t)}{\partial t} + V(x)\psi(x,t) \qquad \text{a. Gupta}$$
A, Gupta
A, Gupta
A, Gupta

Position vs Momentum

Wavefunction for a state of well-defined position x_0 :

$$\psi_{x_0}(x) = \delta(x - x_0)$$

Note this is not square-integrable! What if we measure momentum of the particle?

$$\begin{split} \tilde{\psi}_{x_0}(p) &= \int_{-\infty}^{\infty} \frac{dp}{\sqrt{2\pi\hbar}} \, \delta\left(x - x_0\right) \, e^{-ipx/\hbar} \\ &= \frac{1}{\sqrt{2\pi\hbar}} e^{-ipx_0/\hbar} \end{split}$$

For this $\left|\tilde{\psi}_{x_0}(p)\right|^2=1/\left(2\pi\hbar\right)$. Therefore probability of any momentum is the same! However, strictly, $\tilde{P}(p)$ is not defined (why?)

Wavefunction for a state of well-defined momentum p_0 : The momentum-space wavefunction should be

$$\tilde{\psi}_{p_0}(p) = \delta \left(p - p_0 \right)$$

The fourier transform gives the position space wavefunction as

$$\psi_{p_0}(x) = \frac{1}{\sqrt{2\pi\hbar}} e^{ip_0x/\hbar}$$

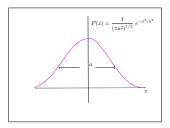
For this, $|\psi(x)|^2 = 1/(2\pi\hbar)$ is a constant. Though strictly, P(x) is not well-defined.

Gaussian Wavefunction

$$\psi(x) = \frac{1}{(\pi a^2)^{1/4}} e^{-x^2/2a^2} e^{ip_0 x/\hbar}$$

Position probability distribution:

$$P(x) = \frac{1}{(\pi a^2)^{1/2}} e^{-x^2/a^2}$$



Is the complex phase $e^{ip_0x/\hbar}$ superflows? No, it contains momentum information!

Momentum wavefunction:

$$\tilde{\psi}(p) = \int_{-\infty}^{\infty} \frac{dx}{\sqrt{2\pi\hbar}} \psi(x) e^{-ipx/\hbar}$$

$$= \frac{1}{(\pi a^2)^{1/4}} \int_{-\infty}^{\infty} \frac{dx}{\sqrt{2\pi\hbar}} e^{-x^2/2a^2} e^{ip_0x/\hbar} e^{-ipx/\hbar}$$

Clearly,

$$\tilde{\psi}(p+p_0) = \frac{1}{(\pi a^2)^{1/4}} \int_{-\infty}^{\infty} \frac{dx}{\sqrt{2\pi\hbar}} e^{-x^2/2a^2} e^{-ipx/\hbar}$$

which involves Fourier transform of a Gaussian function.

Fourier Transform of Gaussian

We need to evaluate the integral

$$f(k) = \int_{-\infty}^{\infty} \frac{dx}{\sqrt{2\pi}} e^{-\alpha x^2} e^{-ikx}$$

where $\alpha = 1/(2a^2)$ and $k = p/\hbar$. Complete the square in the exponent

$$-\alpha x^{2} - ikx = -\alpha \left(x + \frac{ik}{2\alpha}\right)^{2} - \frac{k^{2}}{4\alpha}$$

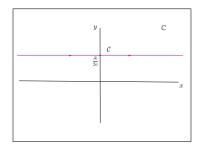
The integral becomes

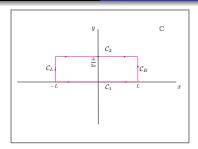
$$f(k) = \frac{1}{\sqrt{2\pi}} e^{-k^2/4\alpha} \int_{-\infty}^{\infty} dx \ e^{-\alpha \left(x + \frac{ik}{2\alpha}\right)^2}$$

$$I = \int_{-\infty}^{\infty} dx \ e^{-\alpha \left(x + \frac{ik}{2\alpha}\right)^2}$$

Visualisation in the complex plane:

$$I = \int_{\mathcal{C}} dz \ f(z), \ f(z) = e^{-\alpha z^2}$$





$$\oint_{\mathcal{C}} dz \, f(z) = \int_{\mathcal{C}_1} dz \, f(z) + \int_{\mathcal{C}_2} dz \, f(z) + \int_{\mathcal{C}_L} dz \, f(z) + \int_{\mathcal{C}_R} dz \, f(z)$$

$$= 0$$

As $L o \infty, \ \int_{\mathcal{C}_R} dz \ f(z) = \int_{\mathcal{C}_L} dz \ f(z) o 0.$ Therefore

$$I = \lim_{L \to \infty} \int_{C_1} dz \, f(z)$$
$$= \int_{-\infty}^{\infty} dx \, e^{-\alpha x^2}$$
$$= \sqrt{\frac{\pi}{-}}$$

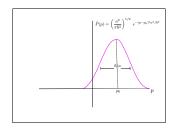
Then

$$f(k) = \frac{1}{\sqrt{2\pi}} e^{-k^2/4\alpha} \int_{-\infty}^{\infty} dx \ e^{-\alpha \left(x + \frac{ik}{2a}\right)^2}$$
$$= \frac{1}{\sqrt{2\alpha}} e^{-k^2/4\alpha}$$

Finally

$$ilde{\psi}(
ho) = \left(rac{a^2}{\pi\hbar^2}
ight)^{1/4} e^{-(
ho-
ho_0)^2 a^2/2\hbar^2}$$

which is also a Gaussian!



Schrodinger Equation for a Free Particle

Schrodinger Equation for a free particle:

$$i\hbar \frac{\partial \psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x,t)}{\partial x^2}$$

Given $\psi(x,0)$, this equation should uniquely determine $\psi(x,t)$. Integral Solution:

$$\psi(x,t) = \int_{-\infty}^{\infty} dx' \ G(x,t;x') \ \psi(x',0)$$

where G(x, t; x') satisfies Schrodinger Equation with the initial condition

$$G(x,0;x') = \delta(x-x')$$

Because of translational invariance, it is sufficient to solve for function G(x, t)

$$i\hbar \frac{\partial G(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 G(x,t)}{\partial x^2}$$

with initial condition $G(x,0) = \delta(x)$. Then, G(x,t;x',0) = G(x-x',t). Interpretation of G(x,t): Wavefunction of a particle at instant t which was localised at x=0 at t=0 ($\psi(x,0) = \delta(x)$; $\psi(x,t) = G(x,t)$).

Momentum Space Schrodinger Equation

Fourier transform to momentum space

$$G(x,t) = \int_{-\infty}^{\infty} \frac{dp}{\sqrt{2\pi\hbar}} g(p,t) e^{ipx/\hbar}$$

g(p, t) satisfies:

$$i\hbar \frac{\partial g(p,t)}{\partial t} = \frac{p^2}{2m} g(p,t)$$

with solution

$$g(p,t) = g(p,0) e^{-i\left(p^2/2m\right)t/\hbar}$$

$$G(x,0) = \delta(x) \implies g(p,0) = 1/\sqrt{2\pi\hbar}$$
. Finally

$$G(x,t) = \int_{-\infty}^{\infty} \frac{dp}{2\pi\hbar} e^{-i\left(p^2/2m\right)t/\hbar} e^{ipx/\hbar}$$

Note that this is the same as

$$G(x,t) = \int_{-\infty}^{\infty} \frac{dp}{2\pi\hbar} e^{-iE_{p}t/\hbar} e^{ipx/\hbar}$$

where $E_p = p^2/2m$ is the classical expression for energy of a free particle.

$$G(x,t) = \int_{-\infty}^{\infty} \frac{dp}{2\pi\hbar} e^{-i(p^2/2m)t/\hbar} e^{ipx/\hbar}$$

involves the Fourier transfrom of $e^{-i\left(p^2/2m\right)t/\hbar}$. We need to evaluate a transform of the form

$$f(x) = \int_{-\infty}^{\infty} \frac{dk}{\sqrt{2\pi}} e^{-iak^2} e^{ikx}, \quad a > 0$$

Completing the square in the exponent, we get

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{ix^2/4a} \int_{-\infty}^{\infty} dk \ e^{-ia(k-x/2a)^2}$$

By shifting k by x/2a and scaling by \sqrt{a} , we get

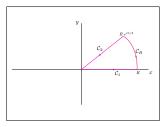
$$f(x) = \frac{1}{\sqrt{2\pi a}} e^{ix^2/4a} \int_{-\infty}^{\infty} dk \ e^{-ik^2}$$

We need a way to evaluate integral of the form

$$I = \int_0^\infty dk \ e^{ik^2}$$
 Fresnel Integral

Fresnel Integral

Let $f(z) = e^{iz^2}$ and consider the contour integral



Since f(z) is analytic everywhere,

$$\oint_{\mathcal{C}} dz \ f(z) = 0$$

Along C_1 :

$$\int_{C_1} dz \, f(z) = \int_0^R dx \, e^{ix^2}$$

$$\to \int_0^\infty dx \, e^{ix^2}; \quad R \to \infty$$

Along C_2 , $z=r\,e^{i\pi/4}$. Therefore $dz=dr\,e^{i\pi/4}$ with r going from R to 0. Further $z^2=i\,r^2$. Then

$$\int_{C_2} dz f(z) = -e^{i\pi/4} \int_0^R dr e^{-r^2}$$

$$\rightarrow -\frac{\sqrt{\pi}}{2} e^{i\pi/4}; R \rightarrow \infty$$

Along C_R

$$\left| \int_{C_R} dz \, e^{iz^2} \right| \leq R \int_0^{\pi/4} d\theta \, e^{-R^2 \sin 2\theta}$$

$$= \frac{R}{2} \int_0^{\pi/2} d\theta \, e^{-R^2 \sin \theta}$$

$$\leq \frac{R}{2} \left(\frac{1 - e^{-R^2}}{2R^2/\pi} \right) \text{ (Jordan's Lemma)}$$

$$\to 0 \text{ as } R \to \infty$$

Finally

$$\int_0^\infty dx \ e^{ix^2} = \frac{\sqrt{\pi}}{2} e^{i\pi/4}$$
$$= \frac{\sqrt{i\pi}}{2}$$

Plugging all this back into G(x, t) gives

$$G(x,t) = \sqrt{\frac{m}{2\pi i\hbar t}} e^{imx^2/2\hbar t}$$

This is non-zero even if x > ct. This is because Schrodinger Equation is not Lorentz invariant. We will (if we get time) explore this later.

Forced Harmonic Oscillator

$$\frac{d^2x(t)}{dt^2} + \omega_0^2 x(t) = f(t)$$

 $f(t) = x(t) = 0 \ \forall \ t < -T_0$. Integral solution:

$$x(t) = \int_{-\infty}^{\infty} dt' G(t - t') f(t')$$

where G(t) (Retarded Green's Function) is given by:

$$\frac{d^2G(t)}{dt^2} + \omega_0^2 \ G(t) = \delta(t); \quad G(t) = 0 \text{ for } t < 0$$

We solve for G(t) using a Fourier Integral Transform.

$$\delta(t) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} e^{i\omega t}$$

$$G(t) = \int_{-\infty}^{\infty} \frac{d\omega}{\sqrt{2\pi}} g(\omega) e^{i\omega t}$$

This gives

$$g(\omega) = \frac{-1}{\sqrt{2\pi}} \left(\frac{1}{\omega^2 - \omega_0^2} \right)$$

Then

$$G(t) = \frac{-1}{2\pi} \int_{-\infty}^{\infty} d\omega \; \frac{e^{i\omega t}}{\omega^2 - \omega_0^2}$$

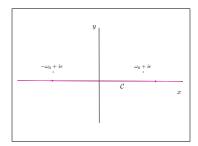
This is clearly singular! However, we still need to impose the condition that G(t) = 0 for t < 0.

Correct prescription for G(t):

$$G(t) = \frac{-1}{2\pi} \lim_{\epsilon \to 0+} \int_{-\infty}^{\infty} d\omega \, \frac{e^{i\omega t}}{(\omega - i\epsilon)^2 - \omega_0^2}$$

Visualisation in the Complex plane:

$$f(z) = \frac{-1}{2\pi} \frac{e^{izt}}{(z - i\epsilon) - \omega_0^2}$$





$$f(z) = \frac{-1}{2\pi} \frac{e^{izt}}{(z-z_1)(z-z_2)}; \ \ z_1 = \omega_0 + i\epsilon, z_2 = -\omega_0 + i\epsilon$$

Using Residue Theorem,

$$G(t) = \left\{ egin{array}{ll} rac{\sin \omega_0 t}{\omega_0}, & t \geq 0 \ 0, & t \leq 0 \end{array}
ight.$$

The solution to the forced harmonic oscillator equation then becomes

$$x(t) = \int_{-\infty}^{t} dt' \, \frac{\sin\left[\omega_0(t - t')\right]}{\omega_0} \, f(t')$$

Example:

$$f(t) = \left\{ egin{array}{ll} \sin\left(\omega_1 t
ight), & |t| < rac{N\pi}{\omega_1} \ \\ 0, & |t| > rac{N\pi}{\omega_1} \end{array}
ight.$$

Then

$$x(t) = \int_{-N\pi/\omega_1}^{t} dt' \frac{\sin\left[\omega_0(t-t')\right]}{\omega_0} f(t')$$

For $t > N\pi/\omega_1$

$$x(t) = \int_{-N\pi/\omega_1}^{N\pi/\omega_1} dt' \frac{\sin\left[\omega_0(t-t')\right]}{\omega_0} \sin\left(\omega_1 t'\right)$$

which satisfies the homogeneous equation with the solution

$$x(t) = A\cos\omega_0 t + B\sin\omega_0 t$$

Problem

Determine A and B by expanding the sin function in the integral.

For
$$-N\pi/\omega_1 < t < N\pi/\omega_1$$

$$x(t) = \int_{-N\pi/\omega_1}^{t} dt' \frac{\sin \left[\omega_0(t - t')\right]}{\omega_0} \sin \left(\omega_1 t'\right)$$

Problem

Determine x(t) for $-N\pi/\omega_1 < t < N\pi/\omega_1$.

1 D Wave Equation With Source

$$\frac{\partial^2 \phi(x,t)}{\partial x^2} - \frac{1}{v^2} \frac{\partial^2 \phi(x,t)}{\partial t^2} = \rho(x,t); \ \rho(x,t) = 0 \ \forall \ t < -T_0$$

We look for a solution such that $\phi(x, t) = 0 \ \forall \ t < -T_0$.

Green's Function:

$$\frac{\partial^2 G(x,t)}{\partial x^2} - \frac{1}{v^2} \frac{\partial^2 G(x,t)}{\partial t^2} = \delta(x)\delta(t); \quad G(x,t) = 0 \,\,\forall \,\, t < 0$$

Then

$$\phi(x,t) = \int_{-\infty}^{\infty} dx' \int_{-\infty}^{\infty} dt' \ G(x-x',t-t')\rho(x',t')$$

Fourier Integral transform of G(x, t):

$$G(x,t) = \int_{-\infty}^{\infty} \frac{dk}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{d\omega}{\sqrt{2\pi}} g(k,\omega) e^{ikx} e^{i\omega t}$$

Expressing delta functions as Fourier Integrals:

$$\delta(x)\delta(t) = \int_{-\infty}^{\infty} \frac{dk}{2\pi} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} e^{ikx} e^{i\omega t}$$

Substitution gives

$$g(k,\omega) = \frac{v^2}{2\pi} \left(\frac{1}{\omega^2 - \omega_k^2} \right), \ \omega_k = v |k|$$

The Green's function with the condition $G(x, t) = 0 \forall t < 0$ is given by

$$G(x,t) = \frac{v^2}{4\pi^2} \lim_{\epsilon \to 0+} \int_{-\infty}^{\infty} dk \ e^{ikx} \int_{-\infty}^{\infty} d\omega \ \frac{e^{i\omega t}}{(\omega - i\epsilon)^2 - \omega_k^2}$$

The ω integral is the same as that for the Harmonic Oscillator. Then

$$G(x,t) = -\frac{v^2}{2\pi} \theta(t) \int_{-\infty}^{\infty} dk \ e^{ikx} \ \frac{\sin(\omega_k t)}{\omega_k}$$

where $\theta(t)$ is a step function

$$\theta(t) = \begin{cases} 1, & t > 0 \\ 0, & t < 0 \end{cases}$$

$$I = \int_{-\infty}^{\infty} dk \, e^{ikx} \, \frac{\sin(\omega_k t)}{\omega_k}$$

$$= \int_{-\infty}^{\infty} dk \cos kx \, \frac{\sin(|k| \, vt)}{|k| \, v}$$

$$= \int_{-\infty}^{\infty} dk \cos kx \, \frac{\sin(kvt)}{kv}$$

$$= \frac{1}{2v} \left[\int_{-\infty}^{\infty} dk \, \frac{\sin k \, (x + vt)}{k} - \int_{-\infty}^{\infty} dk \, \frac{\sin k \, (x - vt)}{k} \right]$$

We now need to evaluate integrals of the form

$$I(a) = \int_{-\infty}^{\infty} dx \, \frac{\sin(ax)}{x}$$

$$I(a) = \begin{cases} +I_s, & a > 0 \\ -I_s, & a < 0 \end{cases}$$

where (to be proved)

$$I_{s} = \int_{-\infty}^{\infty} dx \, \frac{\sin x}{x}$$
$$= \pi$$

This can be written as

$$I(a) = [\theta(a) - \theta(-a)] \pi$$

Then

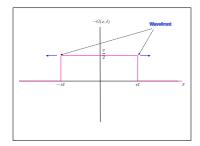
$$G(x,t) = -\pi \frac{v^2}{2\pi} \theta(t) \frac{1}{2v} \left[\theta(x+vt) - \theta(-x-vt) - \theta(x-vt) + \theta(-x+vt) \right]$$

The combination of step functions is easy to visualise

$$\theta(x + vt) - \theta(-x - vt) - \theta(x - vt) + \theta(-x + vt) = \begin{cases} 2; & |x| < vt \\ 0; & |x| > vt \end{cases}$$

Finally

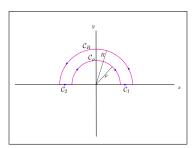
$$G(x,t) = \begin{cases} -\frac{v}{2} \theta(t); & |x| < vt \\ 0; & |x| > vt \end{cases}$$

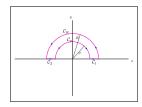


Evaluaion of

$$l_s = \int_{-\infty}^{\infty} dx \, \frac{\sin x}{x}$$
$$= 2 \int_{0}^{\infty} dx \, \frac{\sin x}{x}$$

Let $f(z) = e^{iz}/z$. We consider the closed contour integral of f(z) around the following contour





Since f(z) is analytic all along and within the contour, it follows that

$$\int_{C_1} dz \, f(z) + \int_{C_2} dz \, f(z) + \int_{C_\rho} dz \, f(z) + \int_{C_R} dz \, f(z) = 0$$

$$\implies \int_{C_1} dz \, f(z) + \int_{C_2} dz \, f(z) = -\int_{C_\rho} dz \, f(z) - \int_{C_R} dz \, f(z)$$

Along $\mathcal{C}_1,\ z=r$ and along $\mathcal{C}_2,\ z=-r$. Therefore

$$\int_{\mathcal{C}_1} dz \ f(z) + \int_{\mathcal{C}_2} dz \ f(z) = 2i \int_{\rho}^R dr \ \frac{\sin r}{r}$$

Then

$$2i\int_{\rho}^{R}dr\,\frac{\sin r}{r}=-\int_{\mathcal{C}_{\rho}}dz\,\frac{e^{iz}}{z}-\int_{\mathcal{C}_{R}}dz\,\frac{e^{iz}}{z}$$

We now take the limits $\rho \to 0$ and $R \to \infty$. From Jordan's Lemma, the integral over \mathcal{C}_R goes to zero as $R \to \infty$. We need to evaluate the integral over \mathcal{C}_ρ in the limit $\rho \to 0$. Along \mathcal{C}_ρ , $z = \rho \ e^{i\theta}$, $\theta \in [0,\pi]$. Then

$$\int_{\mathcal{C}_{\rho}} dz \, \frac{e^{iz}}{z} = i\rho \int_{\pi}^{0} d\theta \, e^{i\theta} \, \frac{e^{i\rho(\cos\theta + i\sin\theta)}}{\rho \, e^{i\theta}}$$
$$= -i \int_{0}^{\pi} d\theta \, e^{i\rho(\cos\theta + i\sin\theta)}$$

In the limit $\rho \to 0$, this is $-i\pi$. Then

$$\int_0^\infty dr \; \frac{\sin r}{r} = \frac{\pi}{2}$$

which gives $I_s = \pi$.

Homogeneous Wave Equation

We now solve the equation

$$\frac{\partial^2 \phi(x,t)}{\partial x^2} - \frac{1}{v^2} \frac{\partial^2 \phi(x,t)}{\partial t^2} = 0$$

with initial condition $\phi(x,0)=\phi_0(x)$ and $\partial\phi/\partial t|_{t=0}=0$. We take the Fourier Integral Transform of $\phi(x,t)$

$$\phi(x,t) = \int_{-\infty}^{\infty} \frac{dk}{\sqrt{2\pi}} \, \tilde{\phi}(k,t) \, e^{ikx}$$

Substitution gives

$$\frac{\partial^2 \tilde{\phi}(k,t)}{\partial t^2} = -k^2 v^2 \; \tilde{\phi}(k,t)$$

the general solution to which is

$$\tilde{\phi}(k,t) = A_k \cos(kvt) + B_k \sin(kvt)$$

The initial condition gives $B_k = 0$ and $A_k = \tilde{\phi}_0(k)$, the Fourier Transform of $\phi_0(x)$.

Then

$$\begin{array}{lll} \phi(x,t) & = & \int_{-\infty}^{\infty} \frac{dk}{\sqrt{2\pi}} \ \tilde{\phi}_{0}(k) \cos(kvt) \ e^{ikx} \\ & = & \frac{1}{2} \int_{-\infty}^{\infty} \frac{dk}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{dx'}{\sqrt{2\pi}} \ \phi_{0}(x') \ \left(e^{ikvt} + e^{-ikvt} \right) \ e^{-ikx'} \ e^{ikx} \\ & = & \frac{1}{2} \int_{-\infty}^{\infty} dx' \ \phi_{0}(x') \ \int_{-\infty}^{\infty} \frac{dk}{2\pi} \ \left(e^{ik(x+vt-x')} + e^{ik(x-vt-x')} \right) \\ & = & \frac{1}{2} \int_{-\infty}^{\infty} dx' \ \phi_{0}(x') \ \left(\delta(x+vt-x') + \delta(x-vt-x') \right) \\ & = & \frac{1}{2} \left[\phi_{0}(x+vt) + \phi_{0}(x-vt) \right] \end{array}$$

Problem

Using Fourier Integral Transform, solve the homogeneous wave equation with the initial condition $\phi(x,0)=0$ and $\partial\phi/\partial t|_{t=0}=v_0(x)$.

Diffusion Equation

$$\frac{\partial \phi(\vec{x},t)}{\partial t} = D \nabla^2 \phi(\vec{x},t)$$

3-D Fourier Transform:

$$\phi(\vec{x},t) = \int \frac{d^3k}{(2\pi)^{3/2}} \, \tilde{\phi}(\vec{k},t) \, e^{i\vec{k}\cdot\vec{x}}$$

where $d^3k = dk_x dk_y dk_z$ and $\vec{k} \cdot \vec{x} = k_x x + k_y y + k_z z$. Substitution gives

$$\frac{\partial \tilde{\phi}(\vec{k},t)}{\partial t} = -D \, k^2 \, \tilde{\phi}(\vec{k},t)$$

where $k^2 = k_x^2 + k_y^2 + k_z^2$. the solution is

$$\tilde{\phi}(\vec{k},t) = \tilde{\phi}(\vec{k},0)e^{-Dk^2t}$$

The Fourier Integral reduces to

$$\phi(\vec{x},t) = \int \frac{d^3k}{(2\pi)^{3/2}} \, \tilde{\phi}(\vec{k},0) \, e^{-Dk^2t} \, e^{i\vec{k}\cdot\vec{x}}$$

Using the inverse transform at t = 0

$$\tilde{\phi}(\vec{k},0) = \int \frac{d^3x'}{(2\pi)^{3/2}} \; \phi(\vec{x'},0) \; e^{-i\vec{k}\cdot\vec{x'}}$$

we get

$$\phi(\vec{x},t) = \int d^3x' \ G(\vec{x},t;\vec{x'}) \ \phi(\vec{x'},0)$$

where

$$G(\vec{x}, t; \vec{x'}) = \int \frac{d^3k}{(2\pi)^{3/2}} e^{-Dk^2t} e^{i\vec{k}\cdot(\vec{x}-\vec{x'})}$$

It is easy to check that $G(\vec{x},t;\vec{x'})$ is just the time evolved density distribution if the density at t=0 was $\phi(\vec{x},0)=\delta^3(\vec{x}-\vec{x'})$. This is just the Green's function. It can be evaluated as

$$G(\vec{x}, t; \vec{x'}) = I(x - x', t) I(y - y', t) I(z - z', t)$$

where

$$I(a) = \int_{-\infty}^{\infty} \frac{dp}{\sqrt{2\pi}} e^{-Dp^2t} e^{ipa}$$

This is just the Fourier transfrom of a Gaussian function with the result

$$I(a) = \frac{1}{\sqrt{2Dt}} e^{-a^2/4Dt}$$

Finally,

$$G(\vec{x}, t; \vec{x'}) = \frac{1}{(2Dt)^{3/2}} e^{-(\vec{x} - \vec{x'})^2/4Dt}$$

This solves the diffusion equation.