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Fourier Integral Representation

Fourier Integral Transform

Fourier Integral Transform:

Inverse Transform:

Fourier Integral Representation

1 oo [ o
) = 5- / dk & / X’ f(x') e~
T J—oc0 —oo
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Fourier Integral Representation

Fourier Integral Representation of Dirac Delta Function

Fourier Integral transfrom of the Dirac Delta function:
f(x) = 6 (x — Xo)

~ oo .
fk) = / X S (x— xp) e
—oo V2T
_ Le—ikxo
2m
It then follows that
> dk - ;
S(Xx—xp) = / k) e
oo V2T
oo

A. Gupta Applications of Fourier Integral Transform



Fourier Integral Representation

Fourier Representation of Dirac Delta Function

§(x—xp) = /oo 9K gik(x—xo)

27

Consider the sequence of functions

[ n, |x|<1/2n
5"(")*{ 0. x| >1/2n

Expressing dn(x) as a Fourier Integral, show that

4(x) nimoo on(X)

_ /°° ok ke
oo 2T
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Postulates
Position vs mentum
Solving Schrodinger Equation

Quantum Mechanics

(A few) Postulates of Quantum Mechanics

@ The state of a particle is decribed by a square-integrble complex function, the
wavefunction ¢ (x).

@ If a measurment of position is made, the probability of detecting the particle
between x and x + dx is

)P
POY = = e

© The result of momentum measurement is encoded in the ‘momentum-space
wavefunction’ ¢)(p) which is the Fourier Integral Transform of (x)

- ©  dx ;
= — (x) e ipx / Ti
o) = [ i
where i = h/27. If the momentum of the particle (whose wavefunction is ¢ (x) is
measured, the probability of measuring momentum between p and p + dp is given
by
L2
) |5(0)]
P(p)dp= ————— dp
[ b |4p)|
© The wavefunction eveolves with time according to Schrodinger Equation
2 52
Ihwzfiw+VX¢x7t
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Postulates
Position vs Momentum
Solving Schrodinger Equation

Quantum Mechanics

Position vs Momentum

Wavefunction for a state of well-defined position xp:

hx (X) =6 (X — xp)
Note this is not square-integrable! What if we measure momentum of the particle?

o < dp .
§(x — xp) e~ Px/h

Boe) = [ Zdx=x)

B L

2mh

- 2
For this |1y, (p)‘ = 1/ (27h). Therefore probability of any momentum is the same!
However, strictly, P(p) is not defined (why?)
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Postulates

Quantum Mechanics Position vs Mo

Solving Schrodinger Equation

Wavefunction for a state of well-defined momentum py:
The momentum-space wavefunction should be

Ppo(P) = 5 (P — o)

The fourier transform gives the position space wavefunction as

1 .
Upy (X) = N gPox/h

For this, |¢(x)|? = 1/ (27h) is a constant. Though strictly, P(x) is not well-defined.
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Quantum Mechanics
Position vs Momentum

Solving Schrodinger Equation

Gaussian Wavefunction

1 202 i
w(X) _ e X /2a elpox/h
(71_32) 1/4
Position probability distribution:
1 2/
P(x) = ——— e */
(7ra2) 1/2
/ \\
/ A

Is the complex phase e0*/" superflous? No, it contains momentum information!
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Quantum Mechanics
Position vs Momentum

Solving Schrodinger Equation

Momentum wavefunction:

ip) = /7°° \/‘;%w(x)e—"px/h

1 o dx
(ra2)"/* J—oo V2rh

efx2 yera gPox/h g—ipx/h

Clearly,
7 _ 1 oo dx —x2 /28 —ipx/h
Yv(P+p) = (ne) /_ T e e

which involves Fourier transform of a Gaussian function.
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Postulates
Position vs Momentum
Solving Schrodinger Equation

Quantum Mechanics

Fourier Transform of Gaussian

We need to evaluate the integral

oo .
f(k) :/ d;(ﬂ— efaxz efIkX

where o =1/ (232) and k = p/h. Complete the square in the exponent

—ax® — jkx = —« (x + i)
2o

2 g2
4o
The integral becomes

ik

oo 2
f(k) = \/% e‘kz/“a/ dx e—>(xtzs)
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Postulates

Quantum Mechanics s
Position vs Momentum

Solving Schrodinger Equatior

I:/oo dx e—a(x+4)?
— 00

Visualisation in the complex plane:
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Quantum Mechanics
Position vs Momentum

Solving Schrodinger Equation

y o]
Cy
Cr % Cr
L G I T
?{ dzf(z) = dz f(z) + dz f(z) + dz f(z) + dz f(2)
c C Cp cp Cr

= 0
As L — oo, fcR dz f(z) = ch dz f(z) — 0. Therefore

I = lm dz f(z)
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Postulates
Position vs Momentum

Quantum Mechanics

Solving Schrodinger Equation

Then
) = — e/t [~ greali &)
Vamr —o0
_ 1 e~k /4a
V2«
Finally
; il BT
Y(p) = e e 0

which is also a Gaussian!
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Postulates
Position vs Momentum
Solving Schrodinger Equation

Quantum Mechanics

Schrodinger Equation for a Free Particle

Schrodinger Equation for a free particle:

ROUOG 1 P(x,b)

ot 2m  Ox?

Given 1(x, 0), this equation should uniquely determine v (x, t). Integral Solution:
b(x,t) = / dx’ G(x, t; ') %(x', 0)
— 00

where G(x, t; x") satisfies Schrodinger Equation with the initial condition
G(x,0;x") =6 (x = x)
Because of translational invariance, it is sufficient to solve for function G(x, t)

. 0G(x, 1) 2 92G(x,t)
i =

ot 2m  ox2
with initial condition G(x,0) = 6(x). Then, G(x, t; x’,0) = G(x — x’, t).
Interpretation of G(x, t): Wavefunction of a particle at instant ¢t which was localised at
X = 0att=0 (4(x,0) = §(x); (x, 1) = G(x, 1)).
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Postulates
Position vs Momentum
Solving Schrodinger Equation

Quantum Mechanics

Momentum Space Schrodinger Equation

Fourier transform to momentum space

> do .
G(x,t :/ —_ g(p, t) ePx/"
(x, 1) _oo\/mg(p)

i 090t _ PP
ot 2m

g(p, t) satisfies:

g(p, 1)

with solution

(2
9(p.1) = g(p,0) &/ (F/2m) /"

G(x,0) = 6(x) = g(p,0) = 1/V2rh.
Finally
= [ 2 o g
_oo 2Th
Note that this is the same as

oo . .
G(x, 1) :/ 2‘% e~ Ept/h gipx/h

where Ep, = p?/2mis the classical expression for energy of a free particle.
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Postulat

Quantum Mechanics 5 5
Position mentum

Solving Schrodinger Equation

© do  _ilo? )
Gx=[ Soe (2 /2m)t/n gipe/n
—oo

T
involves the Fourier transfrom of &~/ ("*/2™)!/" \e need to evaluate a transform of

the form © gk
f(x) = / or e @ gk g0
—oc0 V&t

Completing the square in the exponent, we get

f(x) = 1 o /4a /°° ok e—alk—x/2a)?

Ve
By shifting k by x/2a and scaling by v/a, we get
f(X) o !X /4a/ dk e~ k2

We need a way to evaluate integral of the form

l:/ dk e°  Fresnel Integral
0
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Postulates
Position omentum
Solving Schrodinger Equation

Quantum Mechanics

Fresnel Integral

Let f(z) = 7 and consider the contour integral

Since f(z) is analytic everywhere,
}[ dz f(z) = 0
c
Along Cy:

R =
dz f(z) = / dx e
¢ 0

R 02
— / dxe*; R— o
0
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Postulates

Quantum Mechanics 5 5
Position omentum

Solving Schrodinger Equation

Along Co, z = r e'™/4. Therefore dz = dr e™/* with r going from R to 0. Further
22 =i r2. Then
. R 2
dz f(z) = —e”T/“/ dre"
0
—g ™% R oo

Along Cp

A
|

4
/ dz ei22 ~/ do 67R2 sin 20
Cr N

1—e P

2F1’2/7r> (Jordan’s Lemma)
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Postulates

Quantum Mechanics 5 5
Position omentum

Solving Schrodinger Equation

Finally
/°° dx e — VT i/
0 2

Vi

2

Plugging all this back into G(x, t) gives

[ m imx2
G(X, t) _ it emx /2ht

This is non-zero even if x > ct. This is because Schrodinger Equation is not Lorentz
invariant. We will (if we get time) explore this later.
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orced Harmonic Oscillator
rce

Wave Equation ave Equation

Forced Harmonic Oscillator

a?x(t)
folid
f(t) = x(t) =0Vt < —Ty. Integral solution:

+ wg x(t) = (1)

x(t) = / dt' Gt — t)F(t')
where G(t) (Retarded Green’s Function) is given by:

d?G(1)

7 +wg G(t) =4(t); G(tf)=0fort<0

We solve for G(t) using a Fourier Integral Transform.
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Warm Up: Forced Harmonic Oscillator
1D W ion With Source
1D Hom s Wave Equation

Wave Equation

5(t) :/ dw et

o 2T
®  dw ;
G(t :/ — et
=/ 0
This gives
—1 1
)=\ g
Then .
iw
G(t) = / dw —2
UJ —UJO

This is clearly singular! However, we still need to impose the condition that
G(t)=0fort < 0.
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Warm Up: Forced Harmonic Oscwllator
1DV E on With
1D Homo

Wave Equation

Correct prescription for G(f):

_ elwt
Gty = = 1im / do—
o

27 e—0+ 2

ie)? — wg
Visualisation in the Complex plane:

_ izt
fzy= 1 °©

2r (z — ie) — w?

—wy + e wo + i€
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orced Harmonic Oscillator
ation With Source

Wave Equation

10 t<0

-1 eizt
fQ)=—————; 2z = ie, 2o = — i
(2) 2 Z—2)(z-2) 1 =wo +I€, 22 wo + e
Using Residue Theorem,
sin wqt
T 120
G(t) =
0, t<0
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Warm Up: Forced Harmonic Oscillator
1DV E on With ce
1D Homo > Equation

Wave Equation

The solution to the forced harmonic oscillator equation then becomes
t H t—t
X(t) :/ dt/ Sin [OJO( )] f(t/)
—co wo

Example:

sin(wit), [t < &=
f(t) =
o, t| > &%
Then

xo=[ L kol =00 pe
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Warm Up: Forced Harmonic Oscillator

Wave Equation

For t > Nm/wy

N7 /w H Y
x(1) :/ " Sl =0 (w1t')
—Nm /wyq wo

which satisfies the homogeneous equation with the solution

x(t) = Acoswyt + Bsinwyt

Problem

Determine A and B by expanding the sin function in the integral.

For —N7/wi < t < N7t /wy

x(t) = /j at’ sin fwo(t = )] sin (wyt')

N7 /wq wo

Problem

Determine x(t) for —Nm/wy < t < Nm/wy.
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Wave Equation 1D Homogene ave Equation

1 D Wave Equation With Source

Po(x,t) 1 P(x,1)
ox2 vZ Ot
We look for a solution such that ¢(x,t) =0V t < —T,.
Green’s Function:

=p(x,t); p(x,)=0Vt<-To

PG(x,t) 1 8PG(x,1)
Ox? va  or

=8(x)5(t); G(x,f)=0Vt<0

Then - -
$(x, t):/ dx’/ dt’ G(x — X', t — t)p(x', ')

Fourier Integral transform of G(x, t):

_ > dk > dw lkX jwt
G(x,t)f/oor T glkw) e
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Warm Up: F rmonic Oscillator
1D Wave E ith Source
1D Homogene Equation

Wave Equation

Expressing delta functions as Fourier Integrals:

5(X)5(t) :/ g/ (217: eikx eiwt

otk = 2 (1 -
“ 27r wz—wi el

The Green'’s function with the condition G(x,t) =0V t < 0 is given by

Substitution gives

jwt
G(x, t)—— lim / ak e'kX/ do — e
(w— ) - Wy
The w integral is the same as that for the Harmonic Oscillator. Then
in (wkt)

2 (=S} i
G(x, 1) = _;’7 o(t) / dk ek SN
— 00

Wk

where 6(t) is a step function
1, t>0
o(t) =
0, t<0
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Warm Up: Forced Harmonic lator
1D Wave Equation With Source
1D Homogent e Equation

Wave Equation

/ _ /OO dk eikX sin ((.dk t)
— o0 Wk
= /Oo dk cos kx w
oo |k| v
= /oo dk cos kx M
o kv
_ 1 /°° ok sink(x +vt) /°° dk sink (x — vt)
Toov |/l k oo k

We now need to evaluate integrals of the form

I(a):/ﬁDO dxw
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Warm Up: F rmonic Oscillator
1D Wave E ith Source
1D Homogene Equation

Wave Equation

+Is, a>0
I(a) =
—Ils, a<0
where (to be proved)
ls = / ax X
oo X
= 7

This can be written as
I(a) = [6(a) — O(—a)] =
Then
v2 1
G(x,t) = =7 — 0(t) — [0(x + vt) — O(—x — vi) — O(x — vt) + 6(—x + vi)]
2T 2v
The combination of step functions is easy to visualise
2, |x|< vt

O(x + vt) — 0(—x — vt) — O(x — vt) + 0(—x + vt) =
0; |x]>wvt
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Warm Up: Forced Harmonic C

1D Wave Equation With Source
1D Homogeneou:

Wave Equation

e Equation

Finally

—50(t); x| <wvt
G(x, 1) =

0; |x|>wvt

~G(a.1)
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Warm Up: Forced Harmonic lator
1D Wave Equation With Source
1D Homogeneous > Equation

Wave Equation

Evaluaion of

Is

e sin x
/ ax ——
oo X

i sin x
2/ ax ——
0 X

Let f(z) = e”Z/z. We consider the closed contour integral of f(z) around the following
contour
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Warm Up: Forced Harmonl
1D Wave Equation With Sour
1D Homogene: e Equation

Wave Equation

Since f(z) is analytic all along and within the contour, it follows that

C1de(Z)+/(22de(Z)+/(Zdef(Z)+/(ZRde(Z) = 0

= dz f(z) + dz f(2) dz f(z) — dz f(2)
C Co Cy Cr

Along C1, z=r and along C», z = —r . Therefore

a
dz f(z)+ [ dzf(z)=2i / ar N7
Ci Co P r
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Warm Up: Forced Harmonic lator
1D Wave Equation With Source
1D Homogent e Equation

Wave Equation

Then

R iz
2// drﬂ /d—f az &
P Cr z

We now take the limits p — 0 and R — oco. From Jordan’s Lemma, the integral over
Cr goes to zero as R — oo. We need to evaluate the integral over C, in the limit
p—0.Along C,, z=p e, 6 € [0,n]. Then

ez . 0 . glp(cos +isin 6)
dz — Ip/ doe’ ——
Cp z ™ pe

7,-/” 6 eiP(cos 0-+isin 0)
0

In the limit p — 0, this is —i7. Then

>~ sinr
/ i
0 r 2

which gives s = .
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Warm Up: Forced Harmol
1D Wave Equation With Sou

Wave Equation 1D Homogeneous Wave Equation

Homogeneous Wave Equation

We now solve the equation

Po(x,t) 1 P(x,1)

=0
0x2 vZ ot

with initial condition ¢(x,0) = ¢o(x) and 9¢/0t|,_, = 0. We take the Fourier Integral
Transform of ¢(x, t)
> dk

X, t) = b(k, t) e™
st = [ 2= bk
Substitution gives
Pk, t) 2,27
o2 —k“ve o(k, 1)

the general solution to which is
B(k, t) = Ay cos(kvt) + By sin(kvt)

The initial condition gives Bx = 0 and Ax = ¢ (k), the Fourier Transform of ¢g(x).
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tion With Sourc
1D Homogeneous Wave Equatiol

Wave Equation

Then
o(x, 1) = /Oo dk Bo(k) cos(kvt) e
’ oo V
1 [ dk oo dx’ N [ ikt | ikt ik ik
= — — —— ¢o(x’) ("™ + e e e
~/—oo Vv 271' — 00 \/27 ¢0( ) < )

_ 1 e 7 / e dk ik(x+vt—x") ik(x—vt—x")

= —/ dx¢0(x)[w§(e + € )
= / ax’ go(x") (8(x+ vt —x")+6(x — vt — x'))

= 5 [bo(x ) + Go(x — v

Problem

Using Fourier Integral Transform, solve the homogeneous wave equation with the initial
condition ¢(x,0) = 0 and 0¢/0t|,_y = Vo(X).
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Diffusion Equation

Diffusion Equation

9¢(X, t)

— 2 2
i = DVPo(.1)

3-D Fourier Transform:
v dk iK-X
o5, = [ i 0k 0 e
where d3k = dkydkydk; and k - X = kyx + kyy + kzz. Substitution gives

9p(k, 1)

= —Dk2 §(Kk,t
T #(k, 1)

where k2 = k2 ++ k2 + k2. the solution is
3(K, 1) = 3(K,0)e~ Pkt
The Fourier Integral reduces to

. d3k - 2 iRw
o(X,t) = @n )3/2 (k,O)e DK%t gik-X
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Diffusion Equation

Using the inverse transform at t = 0
. aBx’ ~ iR
(]5(/(7 O) = / W ¢(X’,O) e ikx

we get
$(%, 1) = / &X' G(%, t: X') 6(x, 0)

where

L, = d®k D2t R(Fer
oy — — ik-(X—x")
G(X, t; x") / (@n)72 e e
It is easy to check that G(X, t; )F’) is just the time evolved density distribution if the
density at t = 0 was ¢(¥,0) = 63(X — x). This is just the Green’s function. It can be
evaluated as .

GX, tx)=Ix—x" )y -y, t) I(z—Z,t)

I(a) = / T P o0t gn

—oo 2

where
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Diffusion Equation

This is just the Fourier transfrom of a Gaussian function with the result

1 2
a) = e @ /4Dt
@ V2Dt
Finally,
- 1 Y
2 oty — —(X—x")= /4Dt
G(X, t x") = 7(2Dt)3/2 e

This solves the diffusion equation.
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