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Linear Vector Spaces

Let F be the set of real (R) or complex (C) numbers. A set of objects V is called a
‘vector space over F’ if ∀α, β, γ ∈ V (called vectors) and ∀a, b ∈ F (called scalars), the
following hold (with an operation of ‘addition’ of vectors and ‘multiplication’ of a vector
by a scalar defined)

1 α+ β ∈ V (Closure)
2 α+ β = β + α (Addition is Commutative)
3 α+ (β + γ) = (α+ β) + γ (Addition is Associative)
4 Existence of a null or ‘zero’ vector φ ∈ V : α+ φ = φ+ α = α

5 Existence of additive inverse: For each α ∈ V , ∃ (−α) ∈ V : α+ (−α) = φ

6 a α ∈ V
7 a (α+ β) = a α+ a β
8 (a + b) α = a α+ b α
9 a (b α) = (ab) α

10 1.α = α
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Examples
Examples:

Set of all directed arrows in a plane, with addition defined by the parallelogram law
and multipliation with a real number defined as scaling the length of the arrow.
Set of all continuous functions of a real variable defined over some interval.
Solutions to homogeneous linear differential equations.
Set of n-tuples (x1, x2, .., xn) of real or complex numbers with addition and
multiplication by a number defined intuitively. This set is called Rn if the numbers
are real, and Cn if they are complex.
Set of all ‘square-integrable’ complex functions of a real variable over an interval
(a, b) ∫ b

a
dx |ψ(x)|2 <∞ (1)

This set is called L2(a, b).
Infinite set of complex numbers {xk}; k = 1, 2, 3, ... with the condition

∞∑
k=1

xk
2 <∞ (2)

This set is called l2.
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Linear Independence

Definition

A set of vectors α1, α2, .., αn is said to be linearly independent (LI) if an equation of the
form

c1 α1 + c2 α2 + ..+ cn αn = φ

has a unique solution c1 = c2 = .. = cn = 0. An infinite set of vectors is said to be
linearly independent if any finite subset of the set of vectors is linearly independent.

Definition

If a set of vectors is not linearly independent, it is said to be linearly dependent.

If a set of vectors is linearly dependent then at least one of them can be expressed as
a linear combintion of the others. Say, the set α1, α2, .., αn is linearly dependent.
Consider the equation

c1 α1 + c2 α2 + ..+ cn αn = φ

Since the set is not linearly independent, at least two of the coefficients are non-zero.
Say, c1 6= 0. Then

α1 = −
c2

c1
α2 −

c3

c1
α3..−

cn

c1
αn
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Example
Linear Independence of functions f1(x), f2(x), .., fn(x) ∈ L2(a, b).

c1f1(x) + c2f2(x) + ..+ cnfn(x) = 0

Differentiating n − 1 times

c1f1(x) + c2f2(x) + ..+ cnfn(x) = 0

c1f (1)
1 (x) + c2f (1)

2 (x) + ..+ cnf (1)
n (x) = 0

c1f (2)
1 (x) + c2f (2)

2 (x) + ..+ cnf (2)
n (x) = 0

.............................................. = ..

c1f (n−1)
1 (x) + c2f (n−1)

2 (x) + ..+ cnf (n−1)
n (x) = 0

Matrix Equation
f1(x) f2(x) . fn(x)

f (1)
1 (x) f (1)

2 (x) . f (1)
n (x)

. . . .

f (n−1)
1 (x) f (n−1)

2 (x) . f (n−1)
n (x)




c1
c2
.

cn

 =


0
0
.
0


A sufficient condition for a set of functions to be LI is that their Wronskian (detrminant
of the matrix) is non-vanishing at one or more points in the interval.
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Basis

Definition

A maximal LI subset of a vector space V is called a basis of V .

Clearly, a basis spans the vector space.

Theorem

Every vector of a vector space has a unique representation as a linear combination of
the vectors of a basis of the vector space.

Theorem

Every basis of a vector space has the same number of elements.
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Examples

Example

Consider the vector space of all polynomials of degree n. The set {1, x , x2, .., xn} is a
basis for this space.

Example

Consider the vector space L2(0, 1). The infinite set {1, cos(2πkx), sin(2πkx)} for
k = 1, 2, .., .. is LI (since any finite subset is LI). From Fourier’s Theorem, any
f (x) ∈ L2(0, 1) can be expanded as a series of these functions. Then, this set spans
L2(0, 1). The vector space L2(0, 1) is then infinite dimensional.
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Inner Product

Definition

An inner product on a vector space V over a field F is an assignment to each pair of
vectors α and β a scalar (α|β) ∈ F, satisfying the following conditions

1 (α|aβ + bγ) = a(α|β) + b(α|γ) ∀a, b ∈ F (Linearity).
2 (α|β)∗ = (β|α).
3 (α|α) ≥ 0 and (α|α) = 0⇔ α = φ.

Note that the order in which the vectors appear in the inner product is important.
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Example

Inner product on L2(a, b)

(f |g) =

∫ b

a
dx f (x)∗g(x)

Generalisation

(f |g) =

∫ b

a
dx f (x)∗g(x)w(x)

w(x) ≥ 0 : weight function.
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Schwarz Inequality

Theorem

Schwarz Inequality: Any inner product on a complex vector space satisfies the
inequality

|(α|β)| ≤
√

(α|α)
√

(β|β)

Proof.

Let ψ = α+ cβ. Then, since (ψ|ψ) ≥ 0,

(α+ cβ|α+ cβ) ≥ 0

⇒ (α|α) + c∗c(β|β) + c(α|β) + c∗(β|α) ≥ 0

Choosing c = −(β|α)/(β|β) gives the inequality.

Note: The equality holds only if (ψ|ψ) = 0, which implies that ψ = α+ cβ = 0. That is,
α and β are linearly dependent.

A. Gupta Integral Transforms



Linear Vector Spaces
The Fourier Integral

Applications of Fourier Integral Transform

Definition
Linear Independence
Basis
Inner Product
Schwarz Inequality
Norm
Infinite Dimensional Vector Spaces
L2(−a, a) and Fourier Series

Norm

Definition

Given an innerproduct defined on a vector space, a norm (length) can be defined as

‖ α ‖=
√

(α|α)

The norm satisfies the ‘Triangle Inequality’:

‖ α+ β ‖≤‖ α ‖ + ‖ β ‖
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Definition

A pair of vectors is said to be orthogonal if their inner product vanishes.

Definition

A vector is said to be normalized if its norm is equal to unity.

Definition

A pair of vectors α and β is said to be an orthonormal pair if (α|β) = 0 and
‖ α ‖=‖ β ‖= 1.
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Definition

In a finite dimensional vector space, an orthonormal basis is a basis set α1, α2, .., αn
(where n is the dimension of the space) such that

(αi |αj ) = δij

Example

In the space L2(0, 1), the set of functions ψn(x) =
√

2 cos(2πnx) for n = 0, 1, .. and
ψn(x) =

√
2 sin(2πnx) for n = 1, 2, ... form an infinite orthonormal set. In fact,

Fourier’s theorem tells us that they form a basis for L2(0, 1).
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Infinite Dimensional Vector Spaces

Let {αi} be an orthonormal basis in an infinite dimensional space V . How do we
interpret

u =
∞∑
i=1

ci αi

Definition

Let V be an inner product space with a norm ‖ · ‖. A sequence {α1, α2, ..αn} of
vectors in V converges to α ∈ V if

‖ α− αn ‖→ 0 as n→∞

Partial sum

un =
n∑

i=1

ci αi

Then, u = limn→∞ un ↔ ‖ u − un ‖→ 0 as n→∞.
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Theorem

Given

v =
n∑

i=1

ci αi ,

1 ci = (αi |v), so that

v =
n∑

i=1

αi (αi |v)

2

‖ v ‖2=
n∑

i=1

|(αi |v)|2

Proof: Take inner product of both sides with αi and use linearity and orthonormality.
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Bessel’s Inequality

Theorem

Bessel’s Inequality

1
∑∞

i=1 |(αi |u)|2 converges.

2
∑∞

i=1 |(αi |u)|2 ≤‖ u ‖2

Definition

Completeness: An orthonormal set {α1, α2, ..αn, ...} is said to be complete if ∀u ∈ V

u =
∞∑
i=1

αi (αi |u)
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Theorem

An orthonormal set {α1, α2, ..αn, ...} is complete iff

‖ u ‖2=
∞∑
i=1

|(αi |u)|2

Theorem

In the space L2(0, 1), the set of orthonormal functions ψn(x) =
√

2 cos(2πnx) for
n = 0, 1, .. and ψn(x) =

√
2 sin(2πnx) for n = 1, 2, ... form a complete set.
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Space L2(−a,a)

Inner Product:

(f |g) =

∫ a

−a
dx f∗(x)g(x)

Orthonormal Basis: The set

{un} =
{

1/
√

2a,
(
1/
√

a
)

cos (knx) ,
(
1/
√

a
)

sin (knx)
}

; n = 1, 2, 3...

where
kn =

n π
a

Equivalently, the complex set

{φn} =
{(

1/
√

2a
)

eiknx
}

; n = 0,±1,±2,±3, ...

forms an orthonormal basis.

A. Gupta Integral Transforms



Linear Vector Spaces
The Fourier Integral

Applications of Fourier Integral Transform

Definition
Linear Independence
Basis
Inner Product
Schwarz Inequality
Norm
Infinite Dimensional Vector Spaces
L2(−a, a) and Fourier Series

Then, ∀ f (x) ∈ L2(−a, a)

f (x) =
∞∑

n=−∞
cn φn(x)

=
1
√

2a

∞∑
n=−∞

cn eiknx

where

cn = (φn|f )

=
1
√

2a

∫ a

−a
dx f (x) e−iknx
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Transition to Fourier Integral

We take the limit a→∞ to go from L2(−a, a) to L2(R). In this limit,
∆kn = kn+1 − kn = π/a→ dk . Further,∑

n
g (kn) =

∑
n

∆n g (kn)

=
a
π

∑
kn

∆kn g (kn)

→
a
π

∫ ∞
−∞

dk g(k)

Define f̃ (kn) =
√

a/π cn.
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Then, in the limit a→∞,

f (x) =
1
√

2a

∞∑
n=−∞

cn eiknx

=
1
√

2a
×

a
π
×
√
π

a

∑
kn

∆kn f̃ (kn) eiknx

→
∫ ∞
−∞

dk
√

2π
f̃ (k) eikx

where

f̃ (k) = lim
a→∞

f̃ (kn)

= lim
a→∞

√
a
π
×

1
√

2a

∫ a

−a
dx f (x) e−iknx

=

∫ ∞
−∞

dx
√

2π
f (x) e−ikx
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Fourier Integral Transform

Fourier Integral Transform:

f (x) =

∫ ∞
−∞

dk
√

2π
f̃ (k) eikx

Inverse Transform:
f̃ (k) =

∫ ∞
−∞

dx
√

2π
f (x) e−ikx
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