Vector Fields

A. Gupta
${ }^{1}$ Department of Physics St. Stephen's College

Outline

(1) The Polya Field

Complex Functions as Vector Fields

Prescription: Attach a vector $f(z)$ with tail at point z.

Problem: $\int_{\mathcal{C}} d z f(z)$ has no simple interpretation in temrs of line and 'surface' integrals.

The Polya Field

Resolution: Visualize $\overline{f(z)}$ as a vector field (Polya Vector Field).

$$
\begin{aligned}
d z f(z) & =|f| e^{-i \beta} d s e^{i \alpha} \\
& =|f| d s e^{i \theta} ; \theta=\alpha-\beta \\
& =|\bar{f}|(\cos \theta+i \sin \theta) d s \\
& =|\bar{f}| d s \cos \theta+i|\bar{f}| d s \sin \theta \\
& =(\vec{f} \cdot \hat{t}) d s+i(\vec{f} \cdot \hat{n}) d s
\end{aligned}
$$

where \vec{f} is the Polya Vector, \hat{t} is unit tangent and \hat{n} is unit normal to the curve.

$$
\begin{aligned}
\int_{\mathcal{C}} d z f(z) & =\int_{\mathcal{C}} d s \vec{f} \cdot \hat{t}+i \int_{\mathcal{C}} d s \vec{f} \cdot \hat{n} \\
& =\mathcal{W}+\mathcal{F}
\end{aligned}
$$

$$
\begin{aligned}
\oint_{\mathcal{C}} d z f(z) & =\oint_{\mathcal{C}} d s \vec{f} \cdot \hat{t}+i \oint_{\mathcal{C}} d s \vec{f} \cdot \hat{n} \\
& =\iint_{A} d A(\vec{\nabla} \times \vec{f})+i \iint_{A} d A(\vec{\nabla} \cdot \vec{f})
\end{aligned}
$$

where $\vec{\nabla} \cdot \vec{f}=\partial_{x} f_{x}+\partial_{y} f_{y}$ and $\vec{\nabla} \times \vec{f}=\partial_{x} f_{y}-\partial_{y} f_{x}$.

Analyticity and Polya Field

The integral result demonstrates that

Analyticity and Polya Field

The Polya Field associated with an analytic function has zero divergence and curl in the region of analyticity.

Problem

Verify the above using Cauchy-Riemann Equations.

Example

$$
\oint_{\mathcal{C}} d z \bar{z}=2 i A
$$

Polya Field: $\vec{f}=\vec{r}$, with $\vec{\nabla} \cdot \vec{f}=2$ and $\vec{\nabla} \times \vec{f}=0$. Therefore

$$
\oint_{\mathcal{C}} d z \bar{z}=2 i \iint_{A} d A=2 i A
$$

Example

$$
\oint_{\mathcal{C}} \frac{d z}{z}=2 \pi i
$$

Polya Field: $\vec{f}=\vec{r} / r^{2}$ with $\vec{\nabla} \cdot \vec{f}=2 \pi \delta^{(2)}(\vec{r})$ and $\vec{\nabla} \times \vec{f}=0$. Then

$$
\oint_{\mathcal{C}} \frac{d z}{z}=2 \pi i \iint_{A} d A \delta^{(2)}(\vec{r})=2 \pi i
$$

This is physically the electric field due to a point charge (actually, a line charge).

Problem

Analyze the Polya field associated with $f(z)=i / z$.

Dipole Field

Polya field of $f(z)=A / z^{2}$ where $A=a e^{i \phi}$ is complex.

$$
f(z)=\lim _{\epsilon \rightarrow 0}\left[\frac{a / 2 \epsilon}{z-\epsilon e^{i \phi}}-\frac{a / 2 \epsilon}{z+\epsilon e^{i \phi}}\right]
$$

This is just a dipole field.

Multipole Fields

Similarly, $f(z)=A / z^{3}$ represents a quadruploe field, etc. A Laurent series is then a multiplole expansion.

