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Riemann Integral

Integral of a real function f (x)

IR =

∫ xb

xa

dx f (x) = lim
n→∞

n∑
i=1

f (xi ) ∆xi

x

f(x)

xa xb

�xi

xi

f (xi)
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Complex Integral

IC =

∫
C

dz f (x) = lim
n→∞

n∑
i=1

f (zi ) ∆zi

x

y

C
zi

�zi

f (zi)

f (zi)

�zi ⇥ f (zi)

u

v

IC
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Integral Identities

Identities

∣∣∣∣∫
C

dz f (z)

∣∣∣∣ ≤ |f (z)|max lC∫
C

dz a f (z) = a
∫
C

dz f (z)∫
C

dz [f (z) + g(z)] =

∫
C

dz f (z) +

∫
C

dz g(z)∫
C1+C2

dz f (z) =

∫
C1

dz f (z) +

∫
C2

dz f (z)∫
−C

dz f (z) = −
∫
C

dz f (z)
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∫
C1

dz f (z)−
∫
C2

dz f (z) =

∮
C

dz f (z)

C1

C2

⌘

C

C ⌘ C2 + (�C1)
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Complex Inversion

∮
C

dz
(

1
z

)

x x

y y

O O

I

C
dz

✓
1

z

◆
= 2⇡i

I

C
dz

✓
1

z

◆
= 0
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y

O
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r
d✓

rd✓ dr

dr

d✓0
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x

y

O
✓

r
d✓

rd✓ dr

dr

d✓0

✓0

x

y
dz ! dz · 1

z

dr/r�dr/r

i d✓

i d✓0

∮
C

dz
(

1
z

)
= i

∑
dθ

=

{
2πi if C encloses origin

0 if C does not enclose origin
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IC =

∮
C

dz z̄

x

y

O

z
z + �z

�z

+ ⌘ 0

Area of triangle: 1
2 Im [(z + ∆z) z̄] = 1

2 Im (∆z z̄).
Also, Re (IC) = 0.

=⇒
∮

C
dz z̄ = 2i (Area enclosed by C)
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a

b

c

a
b

c

aab

b

c

c

∮
C

dz
(

1
z − z0

)
= 2πi ν (z0)

where ν (z0) is the ’winding number’ of loop C about point z0.
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A1

A2
A3

A4

A1

A2

A1
A2

∮
C

dz z̄ = 2i
∑

j

νj Aj
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Cauchy’s Theorem

Theorem

Cauchy’s Theorem
If a function f (z) is analytic at all points interior to and on a simple closed contour C,
then ∮

C
dz f (z) = 0
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Proof

x

y

C

u

v

f(z)

∮
C

dz f (z) =
∑

i

∮
�i

dz f (z)

A. Gupta Complex Integration



The Complex Integral
Complex Inversion

Winding Number
Cauchy’s Theorem

Deformation Principle
Antiderivatives

Cauchy’s Integral Formula
Infinite Differentiability

Taylor Series
Laurent Series

Residue Theorem
Evaluation of Definite Integrals

x

y

u

v

f(z)

a

b

c

d

A

B
C

D

p
q

✏

�✏

i✏�i✏

∑
i

∮
�i

dz f (z) = A(ε) + C(−ε) + B(iε) + D(−iε)

= p ε+ iq ε

= 0

since iq = −p (small square is mapped to a square).
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Generalization of Cauchy’s Theorem

Theorem

If an analytic function is such that it has no singularities inside a closed loop (the
winding number around the singularity is zero) then its integral around the loop is zero.

Singularity 

C

C1 C2

C3

C = C1 � C2 + 2C3
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Deformation Principle

C1

C2

a

b

Domain of Analyticity

I
dzf(z)
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Illustration:
∫
C dz zn

x

y

C

C1

C2

za

zb

∫
C

dz zn =

∫
C1

dz zn +

∫
C2

dz zn
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Parametric Integration

To evaluate
∫ zb

za
dz f (z), choose a parameter t ∈ R along the curve such that z = z(t)

with z(ta) = za, z(tb) = zb . Then,∫ zb

za

dz f (z) =

∫ tb

ta

dz
dt

f (z(t)) dt

Along C1, z = r eiθa , r ∈ [ra, rb] and dz = eiθa dr . Then,∫
C1

dz zn = ei(n+1)θa

∫ rb

ra
dr rn

= ei(n+1)θa

(
rn+1
b − rn+1

a

n + 1

)
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Along C2, z = rb eiθ = rb (cos θ + i sin θ) , θ ∈ [θa, θb] and
dz = rb (− sin θ + i cos θ) dθ = i rb eiθdθ. Then,∫

C2

dz zn = i rn+1
b

∫ θb

θa

dθ ei(n+1)θ

= i rn+1
b

∫ θb

θa

dθ (cos(n + 1)θ + i sin(n + 1)θ)

=
rn+1
b

n + 1

(
e(n+1)θb − e(n+1)θa

)
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Finally, ∫
C

dz zn =

∫
C1

dz zn +

∫
C2

dz zn

=
rn+1
b ei(n+1)θb − rn+1

a ei(n+1)θa

n + 1

=
zn+1

b − zn+1
a

n + 1

which is formally similar to the real result∫ xb

xa

dx xn =
xn+1

b − xn+1
a

n + 1

Problem

Using a suitable contour, show that
∫ zb

za
dz ez = ezb − eza .
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More Deformation

C

y

Analytic

C0

∮
C

dz f (z) =

∮
C′

dz f (z)
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Problem

Show that ∮
C

dz
1
zn

= 0; n = 2, 3, 4, ...

where C is a closed contour circling the origin.
Hint:

C
|z| = 1

z = ei✓

x

y
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Analytic

C

C1

C2

C3

C4

Singularity

∮
C

dz f (z) =
∑

i

∮
Ci

dz f (z)
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Example

f (z) = 2/
(
z2 + 1

)
= i/(z + i)− i/(z − i)

C1

C2

C

i

�i

i

�i

x

y

x

y
f(z) =

2

z2 + 1

∮
C

dz f (z) = 0
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Problem

Evaluate the integral of f (z) = z5/(z + 1)2 around a simple closed contour circling
z = −1 by expressing f (z) in terms of partial fractions.

Problem

Evaluate the integral of f (z) = sin z/(z + 1)6 around a simple closed contour circling
the origin by expressing sin z in its series form and integrating term by term.
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Antiderivatives

Theorem

Let f (z) be analytic over a domain D. Then there exists an analytic function F (z) such
that F (z) = f ′(z) and ∫ zb

za

dz f (z) = F (zb)− F (za)

F (z) is called the antiderivative of f (z).

Clearly, if F (z) is an antiderivative, so is F̃ (z) = F (z) + c where c is a complex
number.

A. Gupta Complex Integration



The Complex Integral
Complex Inversion

Winding Number
Cauchy’s Theorem

Deformation Principle
Antiderivatives

Cauchy’s Integral Formula
Infinite Differentiability

Taylor Series
Laurent Series

Residue Theorem
Evaluation of Definite Integrals

If F (z) exists, it is clear that
∫ zb

za
dz f (z) = F (zb)− F (za).

x

y

C
zi

�zi

u

v

za

zb
F (z)

F (za)

F (zb)

F 0(zi)�zi = f(zi)�zi

Z zb

za

dz f(z) = F (zb) � F (za)
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Existence and analyticity of F (z): Path independence of integral of f (z) allows us to
define

F (z) =

∫ z

A
dz f (z)

C

A

z

Z z

A

dz f(z) = F (z)
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C

A

C0

P
Q

S

F (Q)− F (P) =

∫
S

dz f (z)

Let ∆ = P − Q be infinitesimal. This implies ∆ is mapped by F (z) to∫
S dz f (z) ≈ f (P)×∆. Therefore F (z) is a map that scales and rotates by a fixed

amount at any point.

=⇒ F (z) is analytic
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Cauchy’s Integral Formula

Let f (z) be analytic on and within a simple closed contour C enclosing point a. Then

1
2πi

∮
C

dz
f (z)

z − a
= f (a)

Proof:
Deforming the contour to a circle of radius R about z = a and writing z = a + Reiθ (so
that dz = iReiθ)

1
2πi

∮
C

dz
f (z)

z − a
=

1
2π

∫ 2π

0
dθ f

(
a + Reiθ

)
→ f (a) as R → 0
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Infinite Differentiability

Theorem

An analytic function f (z) is infinitely differentiable within the domain of analyticity D and
its nth derivative at a point a ∈ D is given by

f (n)(a) =
n!

2πi

∮
C

dz
f (z)

(z − a)n+1

Proof:
Define

Fa(z) =
f (z)− f (a)

z − a

A. Gupta Complex Integration
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Let z = a + ξ be an infinitesimal vector from point a. Then, in the limit ξ → 0

Fa(a + ξ) =
f (a + ξ)− f (a)

ξ

→
f ′(a)ξ

ξ

= f ′(a)

∴ Fa(a) exists and is finite. Since Fa(z) is analytic everywhere else in D, it is analytic
everywhre in D.
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We can use Cauchy’s Integral Formula on Fa(z)

f ′(a) = Fa(a)

=
1

2πi

∮
C

dz
Fa(z)

z − a

=
1

2πi

∮
C

dz
f (z)

(z − a)2 − f (a)
1

2πi

∮
C

dz
1

(z − a)2

=
1

2πi

∮
C

dz
f (z)

(z − a)2

This gives an expression for f ′(a) ∀a ∈ D.
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Analyticity of f ′(z):

f ′(a + ξ)− f (a) =

[
2

2πi

∮
C

dz
f (z)

(z − a− ξ)2 (z − a)

]
ξ

where terms of order ξ2 have been dropped. In the limit ξ is infinitesimal, we can
ignore ξ in the integral as well. Then

f ′(a + ξ)− f (a) =

[
2

2πi

∮
C

dz
f (z)

(z − a)3

]
ξ
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Then f ′(z) scales and rotates ξ by a factor independent of ξ and is therefore analytic,
with f ′′(z) given by

f ′′(a) =
2

2πi

∮
C

dz
f (z)

(z − a)3

We use mathematical induction. The result is clearly true for n = 1. Let f n(a) exist,
given by

f (n)(a) =
n!

2πi

∮
C

dz
f (z)

(z − a)n+1
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Then

f (n)(a + ξ)− f (n)(a) =
n!

2πi

∮
C

dz f (z)

[
(z − a)n+1 − (z − a− ξ)n+1]

(z − a− ξ)n+1 (z − a)n+1

≈
n!

2πi

∮
C

dz f (z)

[
(n + 1) ξ

(z − a− ξ)n+1 (z − a)

]

where binomial theorem has been used and terms of order ξ2 and higher dropped.
Dropping ξ in the denominator gives

f (n)(a + ξ)− f (n)(a) =
(n + 1)!

2πi

∮
C

dz

[
f (z)

(z − a)n+2

]
ξ

which shows that f (n)(z) is analytic with derivative given by the integral formula.
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Taylor Series

Theorem

If a function f (z) is analytic within an origin centered disc of radius R then at any point
z within the disc it can be expressed as a series

f (z) = c0 + c1z + c2z2 + ...+ cnzn + ....

where

cn =
f (n)(0)

n!
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Proof

C

R
C

z

|q| = R

f (z) =
1

2πi

∮
C

dq
f (q)

q − z
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f (z) =
1

2πi

∮
C

dq
f (q)

q − z

=
1

2πi

∮
C

dq
f (q)

q

[
1

1− (z/q)

]
=

1
2πi

∮
C

dq
f (q)

q

[
1 + (z/q) + (z/q)2 + ..

]
=

∞∑
n=0

f (n)(0)

n!
zn

where the integral formula for f (n)(0) has been used.
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Generalization:

Theorem

If a function f (z) is analytic within a disc of radius R centered around a point z0 then at
any point z within the disc it can be expressed as a series

f (z) = c0 + c1 (z − z0) + c2 (z − z0)2 + ...+ cn (z − z0)n + ....

where

cn =
f (n) (z0)

n!
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Laurent Series

Theorem

A function f (z) which is analytica in an annular region r < |z − z0| < R centered about
a point z0 can always be expanded in a series (∀z in the annular region) as

f (z) =
∞∑

n=−∞
an (z − z0)n
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Proof

R

z C1

C2

z0

r

C ⌘ C1 � C2

C

f (z) =
1

2πi

∮
C

dz′
f (z′)

z′ − z

=
1

2πi

∮
C1

dz′
f (z′)

z′ − z
−

1
2πi

∮
C2

dz′
f (z′)

z′ − z

= S1 + S2
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S1 =
1

2πi

∮
C1

dz′
f (z′)

z′ − z

=
1

2πi

∮
C1

dz′
f (z′)

(z′ − z0)− (z − z0)

=
1

2πi

∮
C1

dz′
f (z′)

(z′ − z0) [1− (z − z0) / (z′ − z0)]

=
1

2πi

∮
C1

dz′
f (z′)

(z′ − z0)

∞∑
n=0

(z − z0)n

(z′ − z0)n

since |z − z0| < |z′ − z0| on C1
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Therefore

S1 =
∞∑

n=0

an (z − z0)n ; an =
1

2πi

∮
C1

dz′
f (z′)

(z′ − z0)n+1

Similarly, on C2, |z′ − z0| < |z − z0|. Therefore

S2 =
1

2πi

∮
C1

dz′
f (z′)

(z − z0)

∞∑
n=0

(z′ − z0)n

(z − z0)n

=

−∞∑
n=−1

an (z − z0)n

where again an = 1
2πi

∮
C1

dz′ f (z′)/ (z′ − z0)n+1.
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Finally

R

z

z0

r

C

f (z) =
∞∑

n=−∞
an (z − z0)n

where

an =
1

2πi

∮
C

dz′
f (z′)

(z′ − z0)n+1
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Example

f (z) = 1/ [z(z − 1)] is analytic in the region 0 < |z| < 1. It can therefore be expanded
in a Laurent Series.

f (z) =
1

z(z − 1)

= −
1

1− z
−

1
z

= −
1
z
−
(

1 + z + z2 + z3 + ...
)

= −
1
z
− 1− z − z2 − z3 − ....
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Example

From the general expression

an =
1

2πi

∮
C

dz′
f (z′)

(z′ − z0)n+1 ; z0 = 0

=
1

2πi

∮
C

dz′
[1/(z′ − 1)]

(z′)n+2

=

{
−1, n ≥ −1
0, n < −1
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Problem

Expand f (z) = 1/ [z(z − 1)] in a Laurent Series about z = 1.
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Singularities

Definition

A function f (z) is said to have an isolated singularity at z = z0 if it is not analytic at z0
but is analytic at all neighboring points.

A function can always be expanded in a Laurent Series about an isolated singular point.
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Definition

If there exists a term 1/ (z − z0)m in the Laurent expansion of f (z) with most negative
power of z − z0 then f (z) is said to have a ‘pole of order m’ at z = z0. Else, it is said to
have an ‘Essential Singularity’ at z = z0.

Definition

The ‘residue’ of f (z) at an isolated singular point z0 is defined to be the coefficient of
1/ (z − z0) in the Laurent expansion of f (z) about z = z0.
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Residue Theorem

Theorem

Let f (z) be analytic on and within a closed contour C except at isolated singular points
z1, z2, ..zk . Then ∮

C
dz f (z) = 2πi

k∑
i=1

ν (zi ) Res [zi ]

where ν (zi ) is the winding number of the contour for point zi and Res [zi ] is the residue
of f (z) at z = zi .
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Proof for a single singular point and a simple contour: f (z) can be expanded in a
Laurent Series about the pole zi . Then,∮

C
dz f (z) =

∞∑
n=−∞

an

∮
C

dz (z − z0)n

= a−1

∮
C

dz (z − z0)−1

= 2πi × a−1

= 2πi Res [zi ]

where a−1 is the expansion coefficient for the term 1/ (z − zi ) in the Laurent series for
f (z).

A. Gupta Complex Integration



The Complex Integral
Complex Inversion

Winding Number
Cauchy’s Theorem

Deformation Principle
Antiderivatives

Cauchy’s Integral Formula
Infinite Differentiability

Taylor Series
Laurent Series

Residue Theorem
Evaluation of Definite Integrals

Proof for simple closed contour but multiple poles:

Analytic

C

C1

C2

C3

Singularity

z1

z2

z3

zk

Ck

z1

z2

z3

zk

∮
C

dz f (z) =
k∑

i=1

∮
Ci

dz f (z)

= 2πi
k∑

i=1

Res [zi ]
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Calculation of Residue

Pole of order m:

f (z) =
a−m

(z − z0)m +
a−m+1

(z − z0)m−1 + ...+ a0 + a1 (z − z0) + ...

∴ (z − z0)m f (z) = a−m + a−m+1 (z − z0) + ..+ a−1 (z − z0)m−1 + ..

This gives

a−1 =
1

(m − 1)!
lim

z→z0

dm−1

dzm−1

[
(z − z0)m f (z)

]
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Example

Residue of f (z) = 1/ sin z at z = 0:

1
sin z

=
1

z − z3/3! + z5/5! + ...

f (z) has a pole of order 1 at z = 0. Then

a−1 = lim
z→0

z
sin z

= 1
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Example

f (z) = e−1/z . This has an essential singularity at z = 0. However, in terms of
w = 1/z, it is analytic at w = 0 and so has the Taylor expansion

e−w = 1− w + w2/2!− w3/3! + ...

= 1− 1/z + 1/
(

2! z2
)

+ ...

Then, a−1 = −1.
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Trigonometric Integrals

Integrals of the form

I =

∫ 2π

0
dθ f (sin θ, cos θ)

where f is finite ∀ θ and is a rational function of sin θ and cos θ. Using z = eiθ ,

I = −i
∮
C

dz
z

(
z − z−1

2i
,

z + z−1

2

)

where C is the unit circle. I = (−i)2πi
∑

residues of f within C.
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Example

I =

∫ 2π

0

dθ
1 + a cos θ

, |a| < 1

= −i
2
a

∮
C

dz
z2 + (2/a) z + 1

The integand has poles at z1 = −
(

1 +
√

1− a2
)
/a and z2 = −

(
1−

√
1− a2

)
/a

of which z2 is within C. This gives I = (−2i/a) 2πi [1/ (z2 − z1)] = 2π/
√

1− a2.
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Problem

Evaluate

I =

∫ 2π

0

dθ cos 2θ
5− 4 cos θ
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Integrals With Range −∞ to∞

I =

∫ ∞
−∞

dx f (x)

Assumptions:

f (z) is analytic in upper/lower half of complex plane, including the real axis, except
for a finite number of poles.

As |z| → ∞, f (z)→ 0 faster than 1/z.
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R

R�R

Poles

CR

∮
C

dz f (z) =

∫ R

−R
dx f (x) +

∫
CR

dz f (z)

lim
R→∞

∫
CR

dz f (z) = 0

Then ∫ ∞
−∞

dx f (x) = lim
R→∞

∮
C

dz f (z)

= 2πi
∑

Res f (z)
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Example

I =

∫ ∞
0

dx
1 + x2

=
1
2

∫ ∞
−∞

dx
1 + x2

f (z) = 1/
(
1 + z2) = 1/ [(z + i) (z − i)]. Then Resz=i f (z) = 1/(2i). Therefore

I = 2πi ×
1
2i

=
π

2
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Problem

Evaluate
I =

∫ ∞
0

dx
1 + x4
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Complex Exponentials

I =

∫ ∞
−∞

dx eiax f (x); a > 0

Assumptions:

f (z) is analytic in upper half of complex plane, including the real axis, except for a
finite number of poles.

As |z| → ∞, f (z)→ 0 in upper half plane.
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R

R�R

Poles

CR

∮
C

dz f (z) eiaz =

∫ R

−R
dx f (x) eiax +

∫
CR

dz f (z) eiaz

lim
R→∞

∫
CR

dz f (z) eiaz = 0 (Jordan’s Lemma)

Then ∫ ∞
−∞

dx f (x) eiax = lim
R→∞

∮
C

dz f (z) eiaz

= 2πi
∑

Res f (z) eiaz
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Jordan’s Lemma

IR =

∫
CR

dz f (z) eiaz = iR
∫ π

0
dθ eiθ f

(
Reiθ

)
eiaR cos θ−aR sin θ

Then

|IR | ≤ R |f |max

∫ π

0
dθ e−aR sin θ

= 2R |f |max

∫ π/2

0
dθ e−aR sin θ

For θ ∈ [0, π/2] , 2θ/π ≤ sin θ. Then

|IR | ≤ 2R |f |max

∫ π/2

0
dθ e−2aRθ/π

= 2R |f |max
1− e−aR

2aR/π
<
π

a
|f |max → 0 as R →∞
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Example

I =

∫ ∞
0

dx cos x
1 + x2

Using cos x =
(
eix + e−ix) /2, we get

I =
1
2

∫ ∞
−∞

dx eix

1 + x2

Then, f (z) = 1/2
(
z2 + 1

)
with pole at z = i in upper half plane. Simple calculation

gives I = π/2e.
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