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Spacetime

A point in spacetime is assigned four coordinates
(x0, x1, x2, x3) by inertial observers. The coordinates are
related by Lorentz Transformations such that

(x0)2 − (x1)2 − (x2)2 − (x3)2 = (x0′
)2 − (x1′

)2 − (x2′
)2 − (x3′

)2
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The ‘Celestial Sphere’
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Different observers define different Celestial Spheres (Relativity
of Simultaneity).
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Mapping the Celestial Sphere to C
Celestial Sphere formed at unit time by a pulse of light emitted
from the origin at x0 = x0′

= 0

C
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z = x + iy

✓
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1

Problem

Show that z = cot (θ/2) eiφ.
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Problem

C

x

y

✓

�

1 c = 1

Light Pulse
p

The origin of the complex plane is one unit below a point which
emits a pulse of light. At the instant the pulse is emitted, the
plane C starts moving up with speed c = 1. Referring to the
illustration, show that a light ray emitted at (θ, φ) intersects C at
z = cot (θ/2) eiφ.
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Lorentz Transformations and SL(2,C)

Any spacetime point
(
x0, x1, x2, x3) can be represented by a

2× 2 Hermitian matrix

X =

(
x0 − x3 x1 + ix2

x1 − ix2 x0 + x3

)
such that X † =

(
X T )∗ = X and

det X = (x0)2 − (x1)2 − (x2)2 − (x3)2

Action of a Lorentz Transformation:

X ′ = Q X Q†

where Q is a 2× 2 complex matrix.
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Invariance of invariant interval: det X ′ = det X .

det X ′ = |det Q|2 det X
=⇒ |det Q| = 1

Choice det Q = 1 gives a set of complex 2× 2 matrices with
unit determinant (the set SL(2,C)). The product of two
elements of SL(2,C) belongs to SL(2,C). This set forms a
‘group’, representing the fact that Lorentz transformations in
succession↔ single Lorentz transformation.

Q =

(
a b
c d

)
, ad − bc = 0
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In spherical polar coordinates

X =

(
x0 − r cos θ r sin θeiφ

r sin θe−iφ x0 + r cos θ

)
Spacetimes points along light rays reaching the origin at t = 0
are given by x0 = −r . For such points

X =

(
−r (1 + cos θ) r sin θeiφ

r sin θe−iφ −r (1− cos θ)

)
=

( −2r cos2 (θ/2) 2r sin (θ/2) cos (θ/2) eiφ

2r sin (θ/2) cos (θ/2) e−iφ −2r sin2 (θ/2)

)
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Image Recorded by a Camera

A camera image does not distinguish between events along a
particular light ray. Along a direction (θ, φ), choose
r = 1/

(
2 sin2 (θ/2)

)
(the point from which we pretend light was

emitted which reaches the origin at t = 0). The matrix
corresponding to the camera recording is then

X =

(
− cot2 (θ/2) cot (θ/2) eiφ

cot (θ/2) e−iφ −1

)
=

(
− |z|2 z

z̄ −1

)
where z = cot (θ/2) eiφ.
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Consequence
The image of the celestial sphere recorded by a camera can be
mapped by a Stereographic Projection to C

C

x

y

✓

�

1

✓ = ✓ (�)

Curve on the  
Celestial Sphere

Image of the curve in C

z

Problem
Show that stereographic projection is conformal, i.e., preserves
angles between curves locally.
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Effect of Lorentz Transformation

X ′ = Q X Q†

=

(
a b
c d

) (
− |z|2 z

z̄ −1

) (
a∗ c∗

b∗ d∗

)
=

(
α β
γ δ

)
where α = − |z|2 |a|2 + b∗az + ba∗z̄ − |b|2,
β = − |z|2 ac∗ + zd∗a + bc∗z̄ − bd∗,
γ = − |z|2 a∗c + z̄da∗ + b∗cz − b∗d and
δ = − |z|2 |c|2 + d∗cz + dc∗z̄ − |d |2
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Dividing throughout by −δ, we get

X ′ →
(
−α/δ −β/δ
−γ/δ −1

)

Problem
Verify that

X ′ =

(
− |w |2 w

w̄ −1

)
where

w =
az − b
cz − d
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The celestial sphere of observer O′ is related to w by
w = cot (θ′/2) eiφ′ . Given a curve θ = θ(φ), the map
w = (az − b) / (cz − d) allows us to determine the equation
θ′ = θ′(φ′).

C

x

y

✓

�

1

✓ = ✓ (�)

z

C

x

y

1

✓0 = ✓0 (�0)

✓0

�0

w = f(z)

f(z) =
az � b

cz � d

z = cot (✓/2) ei� w = cot (✓0/2) ei�0
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Mobius Transformations

f (z) =
az + b
cz + d

Sequence of transformations:
z → z + d

c : Translation
z → (1/z) : Reciprocation

z → − (ad−bc)
c2 z : Scaling + Rotation

z → z + a
c : Translation

All except Reciprocation preserve shapes.
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Inversion in Unit Circle

Reciprocation = Inversion + Reflection
Inversion: I(z) = 1/z̄

1/z̄

Inversion
z = rei✓

1/r

1/z̄

Reflection

1/z

z ! 1/z

Inversion swaps points within and without the unit circle. The
unit circle is invariant.
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General Inversion

Generalization to circle of radius R centered around z = q: A
point at distance ρ from center of circle should be mapped to a
point at distance R2/ρ

General Inversion

R

q

z

IR(z)

x

y
C

Problem
Show that

IR(z) =
R2

(z̄ − q̄)
+ q
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C

q

ab

a0

b0

∣∣a′ − q
∣∣ =

R2

|a− q|∣∣b′ − q
∣∣ =

R2

|b − q|

=⇒ |a− q|
|b − q| =

|b′ − q|
|a′ − q| =⇒ ∆aqb ∼ ∆b′qa′
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Problem

Show that |a′ − b′| =
(

R2

|q−a| |q−b|

)
|a− b|
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Property
If a line does not pass through the center of a circle K, its
inversion in K is a circle passing through the center of K.

a

b

a0

b0
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Property
If the image of a line under inversion in a circle K is a circle
passing through the center, the same is true for any other circle.

Proof.
Let the image of a point z in circle K1 of radius R1 be z1 and in
circle K2 of radius R2 be z2. Then

|z2 − q|
|z1 − q| =

R2
2

R2
1

then
IK2 = D(R2

2/R2
1) · IK1

where IK2 , IK1 are inversions and D is dilation (scaling). Dilation
preserves the property, so it is true for all circles.
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Property
Image of a circle under inversion is a circle.

a

b

a0

b0c

q

c0
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