Mobius Transformations

A. Gupta

${ }^{1}$ Department of Physics
St. Stephen's College

Outline

(1) Special Relativity
(2) Lorentz Transformations and SL(2,C)
(3) The Celestial Sphere

4 Mobius Transformations

Spacetime

A point in spacetime is assigned four coordinates $\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$ by inertial observers. The coordinates are related by Lorentz Transformations such that

$$
\left(x^{0}\right)^{2}-\left(x^{1}\right)^{2}-\left(x^{2}\right)^{2}-\left(x^{3}\right)^{2}=\left(x^{0^{\prime}}\right)^{2}-\left(x^{1^{\prime}}\right)^{2}-\left(x^{2^{\prime}}\right)^{2}-\left(x^{3^{\prime}}\right)^{2}
$$

The 'Celestial Sphere’

Different observers define different Celestial Spheres (Relativity of Simultaneity).

Mapping the Celestial Sphere to \mathbb{C}

Celestial Sphere formed at unit time by a pulse of light emitted from the origin at $x^{0}=x^{0^{\prime}}=0$

Problem

Show that $z=\cot (\theta / 2) e^{i \phi}$.

Problem

The origin of the complex plane is one unit below a point which emits a pulse of light. At the instant the pulse is emitted, the plane \mathbb{C} starts moving up with speed $c=1$. Referring to the illustration, show that a light ray emitted at (θ, ϕ) intersects \mathbb{C} at $z=\cot (\theta / 2) e^{i \phi}$.

Lorentz Transformations and SL(2, C)

Any spacetime point $\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$ can be represented by a
2×2 Hermitian matrix

$$
X=\left(\begin{array}{cc}
x^{0}-x^{3} & x^{1}+i x^{2} \\
x^{1}-i x^{2} & x^{0}+x^{3}
\end{array}\right)
$$

such that $X^{\dagger}=\left(X^{T}\right)^{*}=X$ and

$$
\operatorname{det} X=\left(x^{0}\right)^{2}-\left(x^{1}\right)^{2}-\left(x^{2}\right)^{2}-\left(x^{3}\right)^{2}
$$

Action of a Lorentz Transformation:

$$
X^{\prime}=Q X Q^{\dagger}
$$

where Q is a 2×2 complex matrix.

Invariance of invariant interval: $\operatorname{det} X^{\prime}=\operatorname{det} X$.

$$
\begin{aligned}
\operatorname{det} X^{\prime} & =|\operatorname{det} Q|^{2} \operatorname{det} X \\
\Longrightarrow|\operatorname{det} Q| & =1
\end{aligned}
$$

Choice $\operatorname{det} Q=1$ gives a set of complex 2×2 matrices with unit determinant (the set $S L(2, C)$). The product of two elements of $S L(2, C)$ belongs to $S L(2, C)$. This set forms a 'group', representing the fact that Lorentz transformations in succession \leftrightarrow single Lorentz transformation.

$$
Q=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad a d-b c=0
$$

In spherical polar coordinates

$$
X=\left(\begin{array}{cc}
x^{0}-r \cos \theta & r \sin \theta e^{i \phi} \\
r \sin \theta e^{-i \phi} & x^{0}+r \cos \theta
\end{array}\right)
$$

Spacetimes points along light rays reaching the origin at $t=0$ are given by $x^{0}=-r$. For such points

$$
\begin{aligned}
X & =\left(\begin{array}{cc}
-r(1+\cos \theta) & r \sin \theta e^{i \phi} \\
r \sin \theta e^{-i \phi} & -r(1-\cos \theta)
\end{array}\right) \\
& =\left(\begin{array}{cc}
-2 r \cos ^{2}(\theta / 2) & 2 r \sin (\theta / 2) \cos (\theta / 2) e^{i \phi} \\
2 r \sin (\theta / 2) \cos (\theta / 2) e^{-i \phi} & -2 r \sin ^{2}(\theta / 2)
\end{array}\right)
\end{aligned}
$$

Image Recorded by a Camera

A camera image does not distinguish between events along a particular light ray. Along a direction (θ, ϕ), choose $r=1 /\left(2 \sin ^{2}(\theta / 2)\right)$ (the point from which we pretend light was emitted which reaches the origin at $t=0$). The matrix corresponding to the camera recording is then

$$
\begin{aligned}
X & =\left(\begin{array}{cc}
-\cot ^{2}(\theta / 2) & \cot (\theta / 2) e^{i \phi} \\
\cot (\theta / 2) e^{-i \phi} & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
-|z|^{2} & z \\
\bar{z} & -1
\end{array}\right)
\end{aligned}
$$

where $z=\cot (\theta / 2) e^{i \phi}$.

Consequence

The image of the celestial sphere recorded by a camera can be mapped by a Stereographic Projection to \mathbb{C}

Problem

Show that stereographic projection is conformal, i.e., preserves angles between curves locally.

Effect of Lorentz Transformation

$$
\begin{aligned}
X^{\prime} & =Q X Q^{\dagger} \\
& =\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
-|z|^{2} & z \\
\bar{z} & -1
\end{array}\right)\left(\begin{array}{ll}
a^{*} & c^{*} \\
b^{*} & d^{*}
\end{array}\right) \\
& =\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)
\end{aligned}
$$

where $\alpha=-|z|^{2}|a|^{2}+b^{*} a z+b a^{*} \bar{z}-|b|^{2}$,
$\beta=-|z|^{2} a c^{*}+z d^{*} a+b c^{*} \bar{z}-b d^{*}$,
$\gamma=-|z|^{2} a^{*} c+\bar{z} d a^{*}+b^{*} c z-b^{*} d$ and
$\delta=-|z|^{2}|c|^{2}+d^{*} c z+d c^{*} \bar{z}-|d|^{2}$

Dividing throughout by $-\delta$, we get

$$
X^{\prime} \rightarrow\left(\begin{array}{cc}
-\alpha / \delta & -\beta / \delta \\
-\gamma / \delta & -1
\end{array}\right)
$$

Problem

Verify that

$$
X^{\prime}=\left(\begin{array}{cc}
-|w|^{2} & w \\
\bar{w} & -1
\end{array}\right)
$$

where

$$
w=\frac{a z-b}{c z-d}
$$

The celestial sphere of observer O^{\prime} is related to w by $w=\cot \left(\theta^{\prime} / 2\right) e^{i \phi^{\prime}}$. Given a curve $\theta=\theta(\phi)$, the map $w=(a z-b) /(c z-d)$ allows us to determine the equation $\theta^{\prime}=\theta^{\prime}\left(\phi^{\prime}\right)$.

Mobius Transformations

$$
f(z)=\frac{a z+b}{c z+d}
$$

Sequence of transformations:

- $z \rightarrow z+\frac{d}{c}$: Translation
- $z \rightarrow(1 / z)$: Reciprocation
- $z \rightarrow-\frac{(a d-b c)}{c^{2}} z$: Scaling + Rotation
- $z \rightarrow z+\frac{a}{c}$: Translation

All except Reciprocation preserve shapes.

Inversion in Unit Circle

Reciprocation $=$ Inversion + Reflection
Inversion: $I(z)=1 / \bar{z}$

Inversion swaps points within and without the unit circle. The unit circle is invariant.

General Inversion

Generalization to circle of radius R centered around $z=q$: A point at distance ρ from center of circle should be mapped to a point at distance R^{2} / ρ

Problem

Show that

$$
I_{R}(z)=\frac{R^{2}}{(\bar{z}-\bar{q})}+q
$$

$$
\begin{aligned}
\left|a^{\prime}-q\right| & =\frac{R^{2}}{|a-q|} \\
\left|b^{\prime}-q\right| & =\frac{R^{2}}{|b-q|} \\
\Rightarrow \frac{|a-q|}{|b-q|} & =\frac{\left|b^{\prime}-q\right|}{\left|a^{\prime}-q\right|} \Rightarrow \Delta a q b \sim \Delta b^{\prime} q a^{\prime}
\end{aligned}
$$

Problem

$$
\text { Show that }\left|a^{\prime}-b^{\prime}\right|=\left(\frac{R^{2}}{|q-a| q-b \mid}\right)|a-b|
$$

Property

If a line does not pass through the center of a circle \mathcal{K}, its inversion in \mathcal{K} is a circle passing through the center of \mathcal{K}.

Property

If the image of a line under inversion in a circle \mathcal{K} is a circle passing through the center, the same is true for any other circle.

Proof.

Let the image of a point z in circle \mathcal{K}_{1} of radius R_{1} be z_{1} and in circle \mathcal{K}_{2} of radius R_{2} be z_{2}. Then

$$
\frac{\left|z_{2}-q\right|}{\left|z_{1}-q\right|}=\frac{R_{2}^{2}}{R_{1}^{2}}
$$

then

$$
I_{K_{2}}=D_{\left(R_{2}^{2} / R_{1}^{2}\right)} \cdot I_{K_{1}}
$$

where $I_{K_{2}}, I_{K_{1}}$ are inversions and D is dilation (scaling). Dilation preserves the property, so it is true for all circles.

Property

Image of a circle under inversion is a circle.

