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The Complex Derivative

Mystery
Complex functions discussed so far map ‘small squares to
small squares’. What is the significance of this?

Such maps are called ’Conformal’ maps. They preserve angles
locally. Is there a general way to construct other such maps
using complex functions?
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Visual differentiation of a real function
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f(x)

x x + dx
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df

df = f 0(x)dx
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df = f 0(x)dx

df = f 0(x)dx

f 0(x) > 0

f 0(x) < 0
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Generalization to C:
df = f ′(z)dz
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General complex map distorts a small region:
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f ′(z) is not defined for such a map.
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Analytic map: f ′(z) exists. f ′(z) will produce a local scaling plus
rotation, same for all dz
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Analytic map preserves angles locally, since every dz located
at z is rotated by arg f ′(z). However, the region can be locally
stretched/contracted
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Example

f (z) = z + a is trivially analytic. Since df = dz, f ′(z) = 1.

Example

f (z) = a · z. This is analytic, since dz located at z will be scaled
by |a| and rotated by arg a. Since df = a · dz, f ′(z) = a.
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Example

f (z) = zn.
z = reiθ =⇒ f (z) = rneinθ. Therefore,
u = rn cos nθ, v = rn sin nθ. After some work,

du = nrn−1 sin(n − 1)θ dx − nrn−1 sin(n − 1)θ dy
dv = nrn−1 cos(n − 1)θ dx + nrn−1 cos(n − 1)θ dy

This is a local scaling by nrn−1 and a rotation by (n − 1)θ.
Therefore, it preserves angles locally and is analytic.

f ′(z) = n rn−1e(n−1)θ

= n zn−1
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Example

f (z) = z̄. Is this analytic?
Note: z̄ is a reflection of z in the real axis.
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Anti-Conformal

Angle of rotation depends on the orientation. So, f (z) = z̄ is not
analytic.
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Cauchy-Riemann Equations

f (z) = u(x , y) + i v(x , y). What are the constraints on functions
u and v that ensure analyticity/conformality?

(
du
dv

)
=

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)(
dx
dy

)

To locally be a scaling plus rotation, the Jacobian matrix must
have the form

J = λ

(
cosα − sinα
sinα cosα

)
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Conditions for analyticity:

Caucy-Riemann Equations

∂u
∂x

=
∂v
∂y

∂u
∂y

= −∂v
∂x

Given

df = du + idv
= f ′(z) dz

this allows us to deduce f ′(z)
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Complex Derivative

f ′(z) =
∂u
∂x

+ i
∂v
∂x

=
∂f
∂x

Alternative Form

f ′(z) =
∂v
∂y
− i

∂u
∂y

= −i
∂f
∂y
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Polar form of Cauchy-Riemann Equations
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Polar Form

∂v
∂θ

= r
∂u
∂r

∂u
∂θ

= −r
∂v
∂r

df = f ′(z)dz

=⇒ f ′(z) = e−iθ ∂f
∂r

=
−i
z
∂f
∂θ
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Problem
Show that f (z) = zn is analytic and find f ′(z) using the polar
form.

Problem

Writing f (z) = R eiψ, show that the Cauchy-Riemann equations
are equivalent to

∂R
∂θ

= −r R
∂ψ

∂r

R
∂ψ

∂θ
= r

∂R
∂r
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Differentiation Rules

Given f (z) and g(z) are analytic over some domain, their sum
is analytic over that domain.

h(z) = f (z) + g(z)

=⇒ h′(z) = f ′(z) + g′(z)

Proof:

dh = h(z + dz)− h(z)

= [f (z + dz)− f (z)] + [g(z + dz)− g(z)]

= df + dg
=

[
f ′(z) + g′(z)

]
dz
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Given f (z) and g(z) are analytic over some domain, their
product is analytic over that domain.

h(z) = f (z) g(z)

=⇒ h′(z) = f (z) g′(z) + g(z) f ′(z)

Proof:

dh = h(z + dz)− h(z)

= f (z + dz) g(z + dz)− f (z) g(z)

=
[
f (z) + f ′(z) dz

] [
g(z) + g′(z) dz

]
− f (z) g(z)

=
[
f (z) g′(z) + g(z) f ′(z)

]
dz

where terms of order dz2 are dropped.
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Quotient Rule

If f (z) and g(z) are analytic on some domain, their ratio is
analytic everywhere on the domain except at singular points.

Problem
Show that if h(z) = f (z)/g(z) then

h′(z) =
g(z) f ′(z)− f (z) g′(z)

g2(z)
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Composition Rule

If f (z) is analytic over some domain and g(z) is analytic over its
image then g (f (z)) is analytic over the domain of f .

Composition

g′ (f (z)) = g′(w)f ′(z)

where w = f (z).

Proof: Let h(z) = g (f (z)). Then,

h(z + dz) = g (f (z + dz))

= g
(
f (z) + f ′(z)dz

)
(since f ′(z) exists)

= g (f (z)) + g′(w)f ′(z)dz (since g′(w) exists)
=⇒ dh =

(
g′(w)f ′(z)

)
dz
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Consequences of Differentiation Rules:
zn = z · z · z....z · z is analytic and (zn)′ = n zn−1

Polynomials Pn(z) = c0 + c1z + c2z2 + ..+ cnzn are
analytic and

P ′n(z) = c1 + 2 c2 z + 3 c3 z2 + ..+ n cn zn−1

Power Series - are they analytic ??
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Analyticity of Power Series

Let P(z) = c0 + c1 z + c2 z2 + c3 z3 + ... converge over some
domain. P(z) is the limit of the sequence
Pn(z) = c0 + c1 z + c2 z2 + ...+ cn zn.

Domain 
of 

Convergence
p

D

u

v

Pn(D)

P (D)

P (z) = lim
n!1

Pn(z)

Pm(D)

m > n
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P(z) maps small a small disc to a small disc centered about
any point z within radius of convergence.

Analyticity of Power Series

A Power Series P(z) is analytic at all points within its radius of
convergence.

Therefore, P ′(z) exists and is a limit of P ′n(z). Since P ′n(z) is
also a polynomial, it is analytic and preserves small discs.
Therefore, P ′(z) preserves small discs and is therefore also
analytic.

Consequence
A Power Series is infinitely differentiable within its radius of
convergence.
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Analytic Continuation

Consider the power series

P(z) = 1 + z + z2 + z3 + ....

with domain of convergence |z| < 1. In this region, it defines an
analytic function P(z), which preserves angles. However, this
function is defined only for |z| < 1.

P (z) = 1 + z + z2 + z3 + ....
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It is clear we can geometrically extend the image such that it is
conformal. Consider a different power series and the image of
the same region in C

Q(z) =
1
2
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1 +

(
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)
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+ ..

]
, |z + 1| < 2
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The image is the same.
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The series Q(z) converges in a larger region and ‘extends’ the
action of P(z) to new regions of C. We say that Q(z) is the
‘Analytic Continuation of P(z) into the new region
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Clearly, we can increase the image still further maintaining
conformality. Then, there must exist further continuation of P(z)
and Q(z) to other egions of C.
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Function f (z) = 1
1−z has the same action as Q(z) and P(z)

over their respective domains
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Unlike P(z) and Q(z), f (z) is defined over all of C. Then, we
say f (z) is the analytic continuation of P(z) to C.

Question
Is this ‘continuation’ unique?
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Theorem
The Analytic Continuation of a function f (z) is unique

Core idea: If two analytic functions defined over some domain
D are equal on even a segment of a curve lying in D then they
are equal over entire D.

x

y

D

S

If f(z) = g(z) on S then f(z) = g(z) on D
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