Complex Functions

A. Gupta

${ }^{1}$ Department of Physics St. Stephen's College

Outline

(1) Motivation
(2) Complex functions as Maps
(3) Translation, Rotation and Scaling transformations

4 Integer Powers
(5) Exponential Function

6 $\mathrm{Sin} / \mathrm{Cos} /$ Hyperbolic Functions

Convergence of Powers Series

Power series in z seem to converge to same functions of z as of their real counterparts

$$
1+z+z^{2}+z^{3}+z^{4} \ldots=\frac{1}{1-z} \quad \forall|z|<1
$$

What are the complex analogs of other series?
Example

$$
e^{z}=1+z+\frac{1}{2!} z^{2}+\frac{1}{3!} z^{3}+\frac{1}{4!} z^{4}+\ldots
$$

How do we interpret and 'visualize' e^{z} ?

Complex Functions as Maps

Real functions can be visualized as 2-D graphical plots. For complex functions, we will need 4-D intuition! Simpler alternative: visualize $f(z)$ as a map $\mathbb{C} \rightarrow \mathbb{C}$.

Translation

$$
f(z)=z+a, \quad a \in \mathbb{C}
$$

Multiplication with a complex number

$$
f(z)=a \cdot z, \quad a \in \mathbb{C}
$$

$a=|a| e^{i \phi}, z=r e^{i \theta}$

$$
a \cdot z=(|a| r) e^{i(\theta+\phi)}
$$

Scaling by $|a|+$ rotation by ϕ about origin. Figures retain shape but expand (or contract) and rotate.

Fun with Translations and Rotations

Translation operator T_{a} :

$$
T_{a}(z)=z+a
$$

Properties:

$$
\begin{aligned}
T_{a}^{-1} & =T_{-a} \\
T_{a} \cdot T_{b} & =T_{a+b}
\end{aligned}
$$

Rotation operator R_{a}^{θ} :
Rotates z about point aby θ

$$
\begin{gathered}
R_{0}^{\theta}(z)=e^{i \theta} z: \quad \text { Rotation about origin by } \theta \\
R_{a}^{\theta}=T_{a} R_{0}^{\theta} T_{a}^{-1} \\
R_{a}^{\theta}(z)= \\
=e^{i \theta}(z-a)+a \\
= \\
e^{i \theta} z+k, \quad k=a\left(1-e^{i \theta}\right)
\end{gathered}
$$

Rotation about a point \leftrightarrow Rotation about origin + Translation

Problem

Show that rotation about the origin followed by a translation is equivalent to rotation about a point.

Problem

Show that translation followed by rotation about the origin is equivalent to rotation about a point.

Successive rotations

$$
\begin{aligned}
R_{b}^{\phi} \cdot R_{a}^{\theta} & =R_{b}^{\phi}\left[e^{i \theta} z+a\left(1-e^{i \theta}\right)\right] \\
& =e^{i \phi}\left[e^{i \theta} z+a\left(1-e^{i \theta}\right)\right]+b\left(1-e^{i \phi}\right) \\
& =e^{i(\theta+\phi)} z+v, \quad v=a e^{i \phi}\left(1-e^{i \theta}\right)+b\left(1-e^{i \phi}\right)
\end{aligned}
$$

If $\theta+\phi$ is not a multiple of 2π, successive rotations \leftrightarrow single rotation $\boldsymbol{R}_{c}^{\alpha}$ by angle α about a point c.

Problem

If $\theta+\phi$ is an integral multiple of 2π, successive rotations are equivalent to a translation.

Problem

Let $M=R_{a_{n}}^{\theta_{n}} \cdot R_{a_{n-1}}^{\theta_{n-1}} \cdot \ldots R_{a_{2}}^{\theta_{2}} \cdot R_{a_{1}}^{\theta_{1}}$ be a composition of n rotations and $\theta=\theta_{1}+\theta_{2}+\ldots \theta_{n}$ be the total angle of rotation. Then $M=R_{c}^{\theta}$ for some c. However, if $\theta=2 n \pi$ for integer n then $M=T_{v}$ for some v.

Integer Powers

Visualising $f(z)=z^{n}$

$$
\begin{aligned}
z & =r e^{i \theta} \\
f(z) & =r^{n} e^{i n \theta}
\end{aligned}
$$

Action on rays and Arcs

Action on Sectors

Action on Triangles and Rectangles

$f(z)=z^{2}$

$f(z)=z^{2}$

Observation: Triangles and Rectangles are not preserved by this transformation. However, 'small' rectanglular elements are preserved.

Exponential Function

$$
e^{z}=1+z+\frac{1}{2!} z^{2}+\frac{1}{3!} z^{3}+\frac{1}{4!} z^{4}+\ldots
$$

The series converges everywhere on \mathbb{C}, since it converges absolutely.

Geometry of mapping

$$
f(z)=e^{z}
$$

Exponential Function

Sin/Cos/Hyperbolic Functions

$$
\begin{aligned}
& \sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\ldots \\
& \cos z=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\ldots
\end{aligned}
$$

$\Longrightarrow e^{i z}=\cos z+i \sin z \quad$ Generalised Euler's formula

$$
\cos z=\frac{e^{i z}+e^{-i z}}{2}, \quad \sin z=\frac{e^{i z}-e^{-i z}}{2 i}
$$

Identities:

$$
\begin{aligned}
\cos ^{2} z+\sin ^{2} z & =(\cos z+i \sin z)(\cos z-i \sin z) \\
& =e^{i z} e^{-i z} \\
& =1
\end{aligned}
$$

Problem

Show that

$$
\begin{aligned}
\cos (a+b) & =\cos a \cos b-\sin a \sin b \\
\sin (a+b) & =\sin a \cos b+\cos a \sin b
\end{aligned}
$$

Mysterious Hyperbolic Functions

Real hperbolic functions:

$$
\cosh x=\frac{e^{x}+e^{x}}{2}, \quad \sinh x=\frac{e^{x}-e^{-x}}{2}
$$

Properties:

$$
\begin{aligned}
\cosh (a+b) & =\cosh a \cosh b+\sinh a \sinh b \\
\sinh (a+b) & =\sinh a \cosh b+\cosh a \sinh b
\end{aligned}
$$

Mystery: Why do hyperbolic functios share properties with harmonic functions?
Let us generalize to \mathbb{C}.

Complex hyperbolic functions:

$$
\cosh z=\frac{e^{z}+e^{z}}{2}, \sinh z=\frac{e^{z}-e^{-z}}{2}
$$

Observation:

$$
\cosh z=\cos (i z), \quad \sinh z=-i \sin (i z)
$$

There is no real distinction between harmonic and hyperbolic functions in $\mathbb{C}!$ cosh is just rotation of \mathbb{C} by $\frac{\pi}{2}$ followed by cos. sinh is rotation of \mathbb{C} by $\frac{\pi}{2}$, followed by sin and finally a rotation by $-\frac{\pi}{2}$.
$f(z)=\cosh z$

$$
f(z)=\cos z
$$

Problem

Show that:

$$
\begin{aligned}
\cosh 2 z & =\cosh ^{2} z+\sinh ^{2} z \\
\sinh 2 z & =2 \sinh z \cosh z \\
\cosh ^{2} z-\sinh ^{2} z & =1
\end{aligned}
$$

