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Mysterious Divergence of Real Powers Series

Why is the following series representation defined only for
|x | < 1?

1
1 + x

2 = 1 � x

2 + x

4 � x

6 + x

8....

x

y

1�1

i

�i

Singularities of 1/
�
1 + z2

�
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Complex Power Series

How do we interpret

f (z) = 1 � z

2 + z

4 � z

6 + z

8....

Does this even ‘converge’?
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Real Power Series
Limit of a Sequence

P

n

(x) = c0 + c1x + c2x

2 + .. + c

n

x

n

P

n

(x) converges to P(a) at x = a if

lim
n�!1

|P(a) � P

n

(a)| = 0

Given ✏ > 0, 9N

|P(a) � P

n

(a)| < ✏ 8n > N
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Cauchy Sequence

Given ✏ > 0, 9N

|P
n

(a) � P

m

(a)| < ✏ 8n, m > N

Every convergent sequence in R is a Cauchy Sequence
Every Cauchy Sequence in R converges in R
(‘Completeness’ of R)
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Power Series in z

Limit of a Sequence

P

n

(z) = c0 + c1z + c2z

2 + .. + c

n

z

n

c

i

2 C

P

n

(z) is just a sequence of points in C

x

y

1�1

i

�i
2 3 4�2�3�4

2i

3i

�2i

�3i

CPn(z)

P1(z)

P2(z)

P3(z)
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Convergence in C
Sequence P

n

(z) converges to a complex number P(a) at z = a

if Given ✏ > 0, 9N

|P(a) � P

n

(a)| < ✏ 8n > N

x

y

1�1

i

�i
2 3 4�2�3�4

2i

3i

�2i

�3i

CP (a)
✏

P (a) � Pn(a)

P1(a)

Pn(a)
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Cauchy Sequence in C
Given ✏ > 0, 9N

|P
n

(a) � P

m

(a)| < ✏ 8n, m > N

x

y

1�1

i

�i
2 3 4�2�3�4

2i

3i

�2i

�3i

CP (a)

P1(a)

Pn(a)Pm(a)

2✏

Pm(a) � Pn(a)
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Exercise

Every convergent sequence in C is a Cauchy Sequence
Every Cauchy Sequence in C converges in C. Therefore, C
is ‘complete’
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Example

Sequence P

n

(z) = 1 + z + z

2 + z

3 + z

4 + ... + z

n We check for
convergence at various points

-3 -2 -1 1 2 3
u

-3

-2

-1

1

2

3
v

PHzL = 1. + 1.00098 I

-3 -2 -1 1 2 3
x

-3

-2

-1

1

2

3
y

z = 0.5 + 0.5 I

-3 -2 -1 1 2 3
u

-3

-2

-1

1

2

3
v

PHzL = -0.705756 + 1.70691 I

-3 -2 -1 1 2 3
x

-3

-2

-1

1

2

3
y

z = 0.707 + 0.707 I

-3 -2 -1 1 2 3
u

-3

-2

-1

1

2

3
v

PHzL = 0.586462 - 0.270923 I

-3 -2 -1 1 2 3
x

-3

-2

-1

1

2

3
y

z = -0.4 - 0.65 I
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More points...

-3 -2 -1 1 2 3
u

-3

-2

-1

1

2

3
v

PHzL = 0.643984 + 0.798241 I

-3 -2 -1 1 2 3
x

-3

-2

-1

1

2

3
y

z = -0.8 - 0.65 I

-3 -2 -1 1 2 3
u

-3

-2

-1

1

2

3
v

PHzL = 0.564964 + 0.283206 I

-3 -2 -1 1 2 3
x

-3

-2

-1

1

2

3
y

z = -0.4 + 0.7 I

-3 -2 -1 1 2 3
u

-3

-2

-1

1

2

3
v

PHzL = 0.536254 + 0.760197 I

-3 -2 -1 1 2 3
x

-3

-2

-1

1

2

3
y

z = -0.4 + 0.9 I

Observation: The series seems to converge at points within the
circle |z| < 1 and diverge outside the circle.
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Absolute Convergence

The comples power series P(z) = c0 + c1z + c2z

2 + c3z

3 + ....
is said to converge ‘absolutely’ if the real series

P̃(z) = |c0| + |c1z| +
���c2z

2
��� +

���c3z

3
��� + ..

converges.

Theorem

If P̃(a) converges, so does P(a)
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Proof.

Outline of the proof: P̃(a) forms a Cauchy Sequence.
Therefore, ���P̃

n

(a) � P̃

m

(a)
��� < ✏ 8n, m > N

x

y

1�1

i

�i
2 3 4�2�3�4

2i

3i

�2i

�3i

C
Pn(a)

Pm(a)

am+1 zm+1

am+2 zm+2

an zn

|Pn(a) � Pm(a)|

|P
n

(a) � P

m

(a)| <
���P̃

n

(a) � P̃

m

(a)
��� < ✏ 8n, m > N
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Theorem
If P(z) converges at z = a, it absolutely converges everywhere

in |z| < |a|

Proof.

Since P(a) converges, |c
n

a

n| < M 8n for some M. Let ⇢ = |z|
|a|

P̃

n

(z) � P̃

m

(z) =
���c

m+1z

m+1
��� +

���c
m+2z

m+2
��� + ... + |c

n

z

n|

= ⇢m+1
���c

m+1a

m+1
��� + ... + ⇢n |c

n

a

n|

 M

⇣
⇢m+1 + ⇢m+2 + ...⇢n

⌘

=
M

1 � ⇢

⇣
⇢m+1 � ⇢n+1

⌘

which can be made arbitrarily small for ⇢ < 1 for large n, m
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Corollary
If P(z) diverges at some z = a, it will diverge for |z| > |a|

Theorem
Given a power series P(z) = c0 + c1z + c2z

2 + c3z

3 + .. there

exists an R > 0 such that the series converges everywhere for

|z| < R and diverges for |z| > R

Theorem
Series expansion about z = z0: Given the series

P(z) = c0 + c1 (z � z0) + c2 (z � z0)
2 + c3 (z � z0)

3 + .. there

exists an R > 0 such that the series converges everywhere for

|z � z0| < R and diverges for |z � z0| > R
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