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Complex Square Root

f (z) = z1/2

Writing z = r eiθ , we get z1/2 = r1/2 eiθ/2. As θ changes from 0→ 2π, z1/2 changes
from r1/2 to −r1/2. Further change from 2π → 4π restores it to r1/2. Therefore z1/2 is
double-valued over C, with ‘branches’

f1(z) = r1/2 eiθ/2

f2(z) = −r1/2 eiθ/2
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Branch-Point

As long as we do not go around the origin, the function is single-valued and analytic
(Polar C.R. Equations are satisfied). The point z = 0 is a singular point (called
‘Branch-Point’) since the function is not single-valued in any region containing it.
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Branch-Cut
How do we maximize the region of analyticity of f (z)?
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Branch-Cut

Branch-Point 

Convenient choice of Branch-Cut for f (z) = z1/2
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We can now define
z1/2 = r1/2 eiθ/2; −π < θ ≤ π

Note that we can instead define

z1/2 = −r1/2 eiθ/2; −π < θ ≤ π
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Consider f (z) = z1/n. Expressing z = r ei(θ+2nπ), we see that this has n branches:

z1/n = r1/n eiθ/n ei2π/n

We can define a single-valued, analytic function (analytic everywhere except at the
Branch-cut/Branch-Point)

z1/n = r1/n eiθ/n; −π < θ ≤ π

Again, any other branch could have been taken.
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Example

f (z) = z1/3. We wish to calculate f (−2i). Then we take the first branch and define

z1/3 = r1/3 eiθ/3; −π < θ ≤ π

With this branch, −i = e−iπ/2. Then

f (−i) = e−iπ/6

If we were to take the ‘third’ branch

z1/3 = r1/3 eiθ/3 ei2π/3; −π < θ ≤ π

then

f (−i) = e−iπ/6 ei2π/3

= eiπ/2

= i
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Problem

Define the following branch-cut for the multifunction f (z) = z1/n
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Branch-Cut

Branch-Point 

Taking the first branch of f (z) = z1/3, evaluate f (−1− i).
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Analyticity of za; a ∈ R
Let f (z) = za, where a is a rational number. Clearly, it will have a finite number of
branches, given by

za = ra eiaθ ei2nπa

Writing a = p/q, it can be seen that there will be q branches. If a is irrational, there will
be an infinite number of branches. Within any one branch, expressing
za = u(r , θ) + iv(r , θ), we see that

u(r , θ) = ra cos [a (θ + 2nπ)]

v(r , θ) = ra sin [a (θ + 2nπ)]

Then

∂u
∂r

= a ra−1 cos [a (θ + 2nπ)]

∂u
∂θ

= −a ra sin [a (θ + 2nπ)]

∂v
∂r

= a ra−1 sin [a (θ + 2nπ)]

∂v
∂θ

= a ra cos [a (θ + 2nπ)]
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Then

∂v
∂θ

= r
∂u
∂r

∂u
∂θ

= −r
∂v
∂r

which shows that za is analytic for real a. The derivative is given by

dza

dz
= e−iθ

(
∂u
∂r

+ i
∂v
∂r

)
= e−iθara−1 [cos [a (θ + 2nπ)] + i sin [a (θ + 2nπ)]]

= e−iθara−1 eia(θ+2nπ)

= aza−1

Derivative of za; a ∈ R

dza

dz
= aza−1
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Principal Branch
Principal Branch
Properties of Log

The complex logarithm f (z) = log(z) is defined through

elog(z) = z

Writing log(z) = u + iv and z = |z| eiθ

eu eiv = |z| eiθ

we get

u = ln |z|
v = θ + 2nπ; n ∈ Z

Then
log(z) = ln |z|+ i(θ + 2nπ); n ∈ Z

Clearly, log(z) is a multifunction with an infinit enumber of branches, labelled by n.
Everytime we encircle the origin, we enter a new branch.
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Principal Branch
Principal Branch
Properties of Log

We can force log(z) to be single-valued by making a suitable branch cut. The ‘Principal
Branch’ is defined by the following choice

Log(z) = ln |z|+ iθ; −π < θ ≤ π

Then all the branches are given by

log(z) = Log(z) + i2nπ

x

y

Branch-Cut

Branch-Point 
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Principal Branch
Principal Branch
Properties of Log

Example

We evaluate Log
(
−1− i

√
3
)

. Clearly, θ = −2π/3 for the Principal Branch. Furthur,∣∣∣−1− i
√

3
∣∣∣ = 2. Then

Log
(
−1− i

√
3
)
= ln 2− i

2π
3
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Principal Branch
Principal Branch
Properties of Log

Given a branch, the complex logarithm is an analytic function. Writing
log(z) = u(r , θ) + iv(r , θ), we get

u(r , θ) = ln(r)

v(r , θ) = θ + 2nπ

Then

∂u
∂r

=
1
r

∂u
∂θ

= 0

∂v
∂r

= 0

∂v
∂θ

= 1

Then

∂v
∂θ

= r
∂u
∂r

∂u
∂θ

= −r
∂v
∂r
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Principal Branch
Principal Branch
Properties of Log

The derivative of the log function is

d log z
dz

= e−iθ
(
∂u
∂r

+ i
∂v
∂r

)
= e−iθ 1

r

=
1
z

Derivative of log z

d log z
dz

=
1
z
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Properties of Complex Logarithm

1

Log
(
ez) 6= z

Log
(
ez) = ln

∣∣ez ∣∣+ i Arg
(
ez)

= ln
(
ex)+ i y Only if −π < y ≤ π

2

Log (z1z2) 6= Log (z1) + Log (z2)

Log (z1z2) = ln |z1z2|+ i Arg (z1z2)

= ln |z1|+ ln |z2|+ i Arg (z1) + i Arg (z2)

only if −π < Arg (z1) + Arg (z2) ≤ π
3

Log
(

z1

z2

)
6= Log (z1)− Log (z2)

4

Log
(
zn) 6= n Log (z) ; Equality only if −π < n Arg(z) ≤ π
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Generalized Power Function
Definition:

zα = eα ln(z); α ∈ C

Since log(z) is multivalued, so is zα. A single-valued function can be defined as

Zα = eαLog(z)

with a branch cut and a branch point at z = 0. Properties:
1

Z aZ b = Z a+b

Z aZ b = eaLog(z)ebLog(z)

= e(a+b)Log(z)

= Z a+b

2

Z a

Z b
= Z a−b

3 (
Z a)b 6= Z ab
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I =
∫ ∞

0
dx

ln x
x3 + 1

To evaluate this integral, we first evaluate

I1 =

∫ ∞
0

dx
1

x3 + 1

Let f (z) = 1/
(
z3 + 1

)
. This has poles at z1 = eiπ/3, z2 = eiπ and z3 = ei5π/3.

x

y

C1

C2

CR

R

2⇡/3

ei⇡/3
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Then ∮
dz f (z) = 2πi Resz=z1 f (z)

= 2πi Resz=z1

1
(z − z1) (z − z2) (z − z3)

= 2πi
1

(z1 − z2) (z1 − z3)

=
2πi
3

e−i2π/3

The integral along contour C1 is

IC1 =

∫ R

0
dr

1
r3 + 1
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Along C2, z = r ei2π/3; r ∈ [R, 0]. Then dz = ei2π/3dr so that

IC2 = −ei2π/3
∫ R

0
dr

1
r3 + 1

As R →∞, the integral along CR goes to zero. Then,(
1− ei2π/3

)∫ ∞
0

dr
1

r3 + 1
=

2πi
3

e−i2π/3

=⇒ I1 =
2πi
3

e−i2π/3(
1− ei2π/3

)
=

2π
3
√

3
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We now evaluate
I =

∫ ∞
0

dx
ln x

x3 + 1

We choose f (z) = Log(z)
z3+1

with a branch cut for the Log function, and evaluate the
following closed loop contour integral

x

y

C1

C2

CR

R

2⇡/3

ei⇡/3

⇢

C⇢

Along C1, z = r so that

IC1 =

∫ R

ρ
dr

ln r
r3 + 1
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Along C2, z = r ei2π/3 so that dz = ei2π/3dr . Further, Log(z) = ln r + i2π/3. Then

IC2 = −ei2π/3
∫ R

ρ
dr

ln r
r3 + 1

− i
2π
3

ei2π/3
∫ R

ρ
dr

1
r3 + 1

The integrand has poles at z1 = eiπ/3, z2 = eiπ and z3 = ei5π/3 of which only z1 is of
interest. Then ∮

dz f (z) = 2πi Resz=z1 f (z)

= 2πi Resz=z1

Log(z)
(z − z1) (z − z2) (z − z3)

= 2πi
Log(z1)

(z1 − z2) (z1 − z3)

=

(
2πi
3

)
iπ
3

e−i2π/3

= −
2π2

9
e−i2π/3

A. Gupta Multifunctions



Example: z1/2

Fractional Powers
Complex Logarithm

Generalized Power Function
Complex Integration with Multifunctions

Quantum Propagation of a Relativistic Particle

In the limit R →∞, the integral along CR goes to zero. Then substituting for
I1 = 2π/3

√
3, we finally get ∫ ∞

0
dr

ln r
r3 + 1

= −
2π2

27
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Quantum Propagation of a Relativistic Particle

In non-relativistic QM, the wavefunction of a particle at instant t if it is located at the
origin (in a state of well-defined position) is given by

ψ(~x , t) =
∫ ∞
−∞

d3p

(2π~)3 e−iEp t/~ ei~p·~x/~

where Ep = ~p2/2m and d3p = dpx dpy dpz . This expression is not Lorentz invariant. To
construct a Lorentz invariant expression, we conjecture that

ψ(~x , t) = mc2
∫ ∞
−∞

d3p

(2π~)3 Ep
e−iEp t/~ ei~p·~x/~

where Ep =
√
~p2c2 + m2c4.
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To say this is Lorentz invariant is the same as saying that under ~x → ~x ′ and t → t ′, ψ
should remain the same, where (choosing x to be the direction along the Lorentz boost
and working in units with ~ = c = 1)

x0′ = γ(v)
(

x0 − vx
)

x ′ = γ(v)
(

x − vx0
)

y ′ = y

z′ = z

where x0 = ct ≡ t . The wavefunction is

ψ(~x , t) = m
∫ ∞
−∞

dpx dpy dpz

(2π~)3 p0
e−i

(
p0x0−px x−py y−pz z

)

where p0 = Ep =
√

p2
x + p2

y + p2
z + m2.
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Under
(
x0, x , y , z

)
→
(

x0′ , x ′, y ′, z′
)

, the wavefunction changes to

ψ(~x , t) → m
∫ ∞
−∞

dpx dpy dpz

(2π~)3 p0
e−i

(
p0x0′−px x′−py y′−pz z′

)

= m
∫ ∞
−∞

dpx dpy dpz

(2π~)3 p0
e−i

(
p0

[
γ(v)

(
x0−vx

)]
−px

[
γ(v)

(
x−vx0

)]
−py y−pz z

)

= m
∫ ∞
−∞

dpx dpy dpz

(2π~)3 p0
e−i

(
[γ(v)(p0+vpx )]x0−[γ(v)(px+vp0)]x−py y−pz z

)

Now, we change momentum integration variables to p′x , p′y , p′z where

p′x = γ(v) (px + vp0)

p′y = py

p′z = pz

while also defining
p′0 = γ(v) (p0 + vpx )
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Then it is easy to check that the exponent becomes
(
p′0x0 − p′x x − p′y y − p′zz

)
. We

now need the Jacobian for the change in vaiables

dp′x dp′y dp′z = J
(

p′x , p′y , p′z
px , py , pz

)
dpx dpy dpz

where

J =

∣∣∣∣∣∣∣∣∣
∂p′x
∂px

∂p′x
∂py

∂p′x
∂pz

∂p′y
∂px

∂p′y
∂py

∂p′y
∂pz

∂p′z
∂px

∂p′z
∂py

∂p′z
∂pz

∣∣∣∣∣∣∣∣∣
In evaluating the partial derivatives, it should be noted that p0 is also a function of

px , py , pz through p0 =
√

p2
x + p2

y + p2
z + m2.
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The Jacobian is calculated to be

J =

∣∣∣∣∣∣∣∣∣
γ(v) + vγ(v)px/p0 vγ(v)py/p0 vγ(v)pz/p0

0 1 0

0 0 1

∣∣∣∣∣∣∣∣∣
= γ(v) + vγ(v)px/p0

=
p′0
p0

Then

dp′x dp′y dp′z =
p′0
p0

dpx dpy dpz

=⇒
dp′x dp′y dp′z

p′0
=

dpx dpy dpz

p0
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Finally, the wavefunction becomes

ψ(~x , t) → m
∫ ∞
−∞

dp′x dp′y dp′z
(2π~)3 p′0

e−i
(

p′0x0−p′x x−p′y y−p′z z
)

= ψ(~x , t)

and so is invariant under a Lorentz transformation. It is easy to check that in the
non-relativistic limit c →∞, the wavefunction reduces to the non-relativistic one (apart
from an insignificant overall phase).

A. Gupta Multifunctions



Example: z1/2

Fractional Powers
Complex Logarithm

Generalized Power Function
Complex Integration with Multifunctions

Quantum Propagation of a Relativistic Particle

Evaluation of the Wavefunction

We now evaluate

ψ(~x , t) = m
∫ ∞
−∞

dpx dpy dpz

(2π~)3 p0
e−i

(
p0x0−px x−py y−pz z

)

For a given ~x , the set (px , py , pz) can be visualised as a vector ~p. For a given

(px , py , pz), this vector has length p =
√

p2
x + p2

y + p2
z and makes angle θ with ~x . As

(px , py , pz) change in the integral, the length p and the angle θ change

~x

~p

✓

�
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Making a change of variables from (px , py , pz) to (p, θ, φ), we get

ψ(~x , t) =
m

(2π~)3

∫ 2π

0
dφ
∫ ∞

0
dp

p2√
p2 + m2

∫ ∞
0

dθ sin θ e−ip0x0
eip|~x| cos θ

=
4πm

(2π~)3
1∣∣~x∣∣
∫ ∞

0
dp

p2√
p2 + m2

e−ip0x0 sin
(
p
∣∣~x∣∣)

p

We now evaluate this at space-like point
(
t , ~x
)

such that −t2 +
∣∣~x∣∣2 > 0. Then it is

possible to choose a Lorentz frame such that t = 0. With this choice, we get

ψ =
4πm

(2π~)3
1∣∣~x∣∣
∫ ∞

0
dp

p√
p2 + m2

sin
(
p
∣∣~x∣∣)

=
2πm

(2π~)3
1∣∣~x∣∣
∫ ∞
−∞

dp
p√

p2 + m2
sin
(
p
∣∣~x∣∣)

=
2πm

(2π~)3
1∣∣~x∣∣2
∫ ∞
−∞

du
u√

u2 + a2
sin u

where a = m
∣∣~x∣∣.
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We now need to evaluate the integral

I =
∫ ∞
−∞

du
u√

u2 + a2
sin u

We evaluate it in the complex plane. Let

f (z) =
z

√
z − ia

√
z + ia

sin z

=
1
2i

z
√

z − ia
√

z + ia

(
eiz − e−iz

)
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x

y

C

ia

�ia

Then
I =

∫
C

dz f (z)

We evaluate the two exponential parts separately. For the first, we consider the
following contour

x

y

C

ia

�ia
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In the limit the radius of the semicircle approaches infinity, the contour integral reduces
to

x

y

ia

�ia

C1

C2C0 = C1 + C2

z

r

⇢

✓

�

Writing z − ia = r eiθ and z + ia = ρ eiφ such that
−3π/2 < θ ≤ π/2, −π/2 < θ ≤ 3π/2, the first exponential term contributes to the
function as

f (z) =
1
2i

z eiz
√

z − ia
√

z + ia
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Along C1, θ = −3π/2, φ = π/2 so that∫
C1

dz f (z) = −
1
2

∫ 0

∞
dr

(a + r) e−(a+r)

r1/2ρ1/2

=
1
2

∫ ∞
0

dr
(a + r) e−(a+r)

r1/2 (2a + r)1/2

=
1
2

∫ ∞
a

du
u e−u√
u2 − a2

Along C2, θ = π/2, φ = π/2 and it is easy to check that the integral gives the same
contribution. For the second exponential term, we take a similar contour in the lower
half complex plane. Again, the contribution is easily seen to be the same as for the
upper half. Then, finally

I = 2
∫ ∞

a
du

u e−u√
u2 − a2
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The wavefunction is then

ψ =
4πm

(2π~)3
1∣∣~x∣∣2

∫ ∞
a

du
u e−u√
u2 − a2

where (substituting back ~ and c),

a =

∣∣~x∣∣
(~/mc)

Making a simple substitution gives

ψ =
4πm

(2π~)3
1∣∣~x∣∣2 e−a

∫ ∞
0

ds
(s + a) e−s√

s(s + 2a)

The exponential factor e−a = e−
|~x|

(~/mc) shows that the probability of detecting the
particle outside the light-cone falls exponentially with distance with a characteristic
length equal to the compton wavelength λc = ~/mc of the particle.
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