Multifunctions

A. Gupta

1 Department of Physics
St. Stephen’s College

A. Gupta ltifunctions



Outline

@ Example: 21/2
e Fractional Powers

e Complex Logarithm
@ Principal Branch
@ Analyticity of Complex Logarithm
@ Properties of Log

o Generalized Power Function
e Complex Integration with Multifunctions

e Quantum Propagation of a Relativistic Particle

A. Gupta Multifunctions



Example: 21/2

Complex Square Root

f(z)=2"2

Writing z = r e, we get z'/2 = r1/2 ¢/%/2 As § changes from 0 — 2x, z'/2 changes
from r'/2 to —r'/2. Further change from 27 — 4 restores it to r'/2. Therefore z'/2 is
double-valued over C, with ‘branches’

fi(z)
2(2)
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Example: 2

Branch-Point

As long as we do not go around the origin, the function is single-valued and analytic
(Polar C.R. Equations are satisfied). The point z = 0 is a singular point (called
‘Branch-Point’) since the function is not single-valued in any region containing it.

v
Not-Analytic \( Analytic
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Example: 2

Branch-Cut

How do we maximize the region of analyticity of f(z)?

Branch-Cut

Convenient choice of Branch-Cut for f(z) = z1/2

Branch-Point

Branch-Cut
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Example: 21/

We can now define )
ZV/2 =172 6002, _pco<n

Note that we can instead define

22— 2 g0/2. _ncg<n
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Fractional Powers

Consider f(z) = z'/". Expressing z = r €/(®+277) e see that this has n branches:
z1/n — r1/n eie/n ei2ﬂ-/n

We can define a single-valued, analytic function (analytic everywhere except at the
Branch-cut/Branch-Point)

ZV/n=Vngl/n. _rcpg<ng

Again, any other branch could have been taken.

A. Gupta Multifunctions



Fractional Powers

Example

f(z) = z'/3. We wish to calculate f(—2i). Then we take the first branch and define
/BB G0/8, i cp<p
With this branch, —i = e=/"/2, Then
f(—i) = e~"/8
If we were to take the ‘third’ branch
21/8 = /3 gi8/3 g2n/3. _ o g < p
then
f(—i) = e in/6g2T/3
gim/2

= i
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Fractional Powers

Define the following branch-cut for the multifunction f(z) = z'/n

Yy

Branch-Point

Taking the first branch of f(z) = z/3, evaluate f(—1 — i).
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Fractional Powers

Analyticity of z2, a€ R

Let f(z) = z4, where a'is a rational number. Clearly, it will have a finite number of
branches, given by

73— ra eiaa ei2n7ra
Writing a = p/q, it can be seen that there will be q branches. If ais irrational, there will
be an infinite number of branches. Within any one branch, expressing
z2 = u(r,0) + iv(r, 0), we see that

u(r,0) = ricosla(f+ 2nm)]

v(r,0) = r?sin[a(f+ 2nm)]
Then

ou a—1

— = 042

ar ar® 'cos[a(f+ 2nm)]

0

8—;’ = —ar?sin[a(d + 2nm)]

ov a—1 i

— = 0+2

ar ar? 'sin[a(0 + 2nm)]

ov a

7 2

50 aricosfa(f + 2nm)]
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Fractional Powers

Then
v _ | ou
a0 —  or
ou _ _ov
a0 or

which shows that z2 is analytic for real a. The derivative is given by

i e (U OV
dz ar ' or
= e %ar® ' [cos[a(0 + 2nm)] + isin[a (6 + 2nm)]]
— e—ieara—1 eia(9+2n7r)
2781

Derivative of z2;

a
dz _ ot
az
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Principal Branch

Complex Logarithm

Properties of Log

The complex logarithm f(z) = log(z) is defined through
o9(2) —
Writing log(z) = u+ ivand z = |z| e
e’ e = |z| e

we get

In|z|
v = 6+4+2nm; nel
Then
log(z) =In|z| +i(6 +2nw); neZ

Clearly, log(z) is a multifunction with an infinit enumber of branches, labelled by n.
Everytime we encircle the origin, we enter a new branch.
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Principal Branch
Principal Branch
Properties of Log

Complex Logarithm

We can force log(z) to be single-valued by making a suitable branch cut. The ‘Principal
Branch’ is defined by the following choice

Log(z) =In|z|+i0;, —m<6<m
Then all the branches are given by

log(z) = Log(z) + i2nm

Branch-Point
Branch-Cut
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Principal Branch
Principal Branch

Complex Logarithm

We evaluate Log (—1 — i\/§). Clearly, 8 = —2mx /3 for the Principal Branch. Furthur,
‘—1 - i\/§’ =2. Then
, 2m
Log (71 — /\/ﬁ) =In2— /?
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Complex Logarithm

Properties of Log

Given a branch, the complex logarithm is an analytic function. Writing
log(z) = u(r,0) + iv(r,6), we get

u(r,8) = In(r)
v(r,0) = 6+42nm
Then
u_1
ar  r
ou_,
o0
ov _
or
o _
o6
Then
v ou
o  or
u o
a0 ar
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Principal Branch
Principal Branch
Properties of Log

Complex Logarithm

The derivative of the log function is

dlog z _ e_,g(@ /@)
az or or
|
r
1
z

Derivative of log z
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Principal Branch
Principal Branch
Properties of Log

Complex Logarithm

Properties of Complex Logarithm

o
Log (6%) # z
Log (6*) = In|e*|+iArg(e?)
= In(e")+iy Onlyif—r<y<m
o

Log(z122) # Log (1) + Log (22)

Log(z212z2) = In|ziz|+ 1 Arg(z12)
In|zi| +In|zo| + i Arg (z1) + i Arg (22)

only if - < Arg(z1) + Arg(z2) <
e Z
Log (?;) 4 Log(z1) — Log (22)

()
Log (z") # nLog(z); Equality only if —m < nArg(z) <=
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Generalized Power Function

Generalized Power Function

Definition:
z* =2, 4ecC
Since log(z) is multivalued, so is z*. A single-valued function can be defined as
Zo — eaLog(z)

with a branch cut and a branch point at z = 0. Properties:

o
za Zb _ Za+b
za Zb — eaLog(z) ebLog(z)
e(a+b)Log(z)
Za+b
(2]
;Z — Zafb
° b
( Za) # Zab
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Complex Integration with Multifunctions

o0 In x
| = d
/(; Xx3+1

To evaluate this integral, we first evaluate

©° 1
Iy = ax ———
! /o Xx3+1

Let f(z) =1/ (2% + 1). This has poles at z; = €/3, z, = €™ and z; = €™/3.
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Complex Integration with Multifunctions

Then
7§ dzf(z) = 2riRess—zf(2)

2ri Res, !

= T =

T z-z)(z2-2)(z- 2)
1
= 21—
(21 — 22) (21 — 23)

2wl _jor/3

= —e
3

The integral along contour Cy is

R 1
le, = ar
C1 /0 r34+1
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Complex Integration with Multifunctions

Along Cp,z = r €27/3; r € [R,0]. Then dz = e2™/3dr so that

le :—6’2”/3/Rdr !
2 0 f3+1

As R — oo, the integral along Cgr goes to zero. Then,

) o0 1 oni
1 _ g2n/3 / o _  2m _ian/3
( e ) ; F 3 °

- = ——
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Complex Integration with Multifunctions

We now evaluate

o0 In x
/= ax
/0 x3 41
Log(2)

We choose f(z) = 41 with a branch cut for the Log function, and evaluate the
following closed loop contour integral

Along Cq, z = r so that
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Complex Integration with Multifunctions

Along C, z = r €27/3 so that dz = €27/3dr. Further, Log(z) = Inr + i2x/3. Then

Inr
_ I27r/3 _ -7 I27'r/3
ICZ_ / dl’3+1 / dfr3+1

The integrand has poles at z; = €7/3, z, = /™ and z3 = €/°7/3 of which only z; is of

interest. Then
?{dz f(z)

2ni Resz—z, f(2)

Log(z)
(z—21)(z2—22)(2— z)
Log(z1)
(z1 — 22) (21 — z3)

_ (@) IT g-izn/3
3) 3

= _277(2 e_i277/3
9

= 2mi Resz=

= 27i
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Complex Integration with Multifunctions

In the limit R — oo, the integral along Cr goes to zero. Then substituting for

Iy = 27/3+/3, we finally get
[e) 2
/ o Inr __ 2i
o P11 27
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Quantum Propagation of a Relativistic Particle

Quantum Propagation of a Relativistic Particle

In non-relativistic QM, the wavefunction of a particle at instant t if it is located at the
origin (in a state of well-defined position) is given by

%) 3 X —
w()?, f) :/ d p3 eflEpt/h e/p-x/ﬁ
—o0 (27Tﬁ)

where Ep = p2/2mand d®p = dpxdpydpz. This expression is not Lorentz invariant. To
construct a Lorentz invariant expression, we conjecture that

%t mcz/ o Eot/h g% /h
vx D = (27rh)3 Ep

where Ep = \/p2¢% + m2ch.
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Quantum Propagation of a Relativistic Particle

To say this is Lorentz invariant is the same as saying that under X — X’ and t — t/,
should remain the same, where (choosing x to be the direction along the Lorentz boost
and working in units with i =c = 1)

X0 = () <x° - vx)
X' = () (x - vxo)
yo o=y
zZ = z

where x° = ¢t = t. The wavefunction is

(%, 1) = m/°° dpxdpy dp; efi(poxl’fpxxfpyyfpzZ)
’ —s0 (27h)° po

where py = Ep = /02 + p2 + p2 + m2.

(]

A. Gupta Multifunctions



Quantum Propagation of a Relativistic Particle

Under (x%,x,y,z) — (xo/, x'y, z’), the wavefunction changes to
Y(X, 1) — m/oo 7dpxdp§dpz —i(pox® "o~y —p:7')
oo (2mh)” po

m/oo dpxdpy dp; efi(Po[W(V)(XO*VX)]7Px[7(v)(X*VXO)}*Pyyfpzz)
—so (27h)° po

- m / > AP APy APz i ([(v) (P v )~y (V) (px-+ Vo0 )X~y y —P22)
—o (27h)° po

Now, we change momentum integration variables to py, pj,, p; where

Px 7(v) (px + vipo)
P} = Py
p; = pz

while also defining
po = (V) (Po + vpx)
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Quantum Propagation of a Relativistic Particle

Then it is easy to check that the exponent becomes (p(’)x0 —PX —pyy — p,z). We
now need the Jacobian for the change in vaiables

dpi dpydp; = J <

where
op}
_ Py
J= 9Opx
ap}
Opx

In evaluating the partial derivatives, it should be noted that py is also a function of

P> Py, Ph
Px; Py, Pz

op}
opy
ap}
apy
ap}
opy

Px, Py Pz through po = \/p% + p§ + pZ + m?.
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Quantum Propagation of a Relativistic Particle

The Jacobian is calculated to be

Y(v) +vy(V)px/Po vy (V)Py/Po vy (V)Pz/Po

J = 0 1 0
0 0 1
= (V) + vy(v)px/Po
_ R
Po
Then
/ / / p (/)
dpxdp,dp; = % dpxdpy dpz
_. %% dxz; dp; _ dpxdpydp:
po Po
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Quantum Propagation of a Relativistic Particle

Finally, the wavefunction becomes

wE - m / = Iy 0z i iy —pl)
— o0

(27h)® p}
= X1

and so is invariant under a Lorentz transformation. It is easy to check that in the
non-relativistic limit ¢ — oo, the wavefunction reduces to the non-relativistic one (apart
from an insignificant overall phase).
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Quantum Propagation of a Relativistic Particle

Evaluation of the Wavefunction

We now evaluate
B(E 1) = m/°° dpxdpgdpz e*f(POXO*PxX*Py}’*PZZ)
—oo (2mh)” po
For a given X, the set (px, py, pz) can be visualised as a vector p. For a given

(bx, Py, Pz), this vector has length p = /p2 + p2 + pZ and makes angle 6 with X. As
(bx, py, pz) change in the integral, the length p and the angle ¢ change
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Quantum Propagation of a Relativistic Particle

Making a change of variables from (px, py, pz) to (p, 0, ¢), we get

2
PX, 1) = (2 o / / > 2/ d@sing e~ Pox" gin|%|cos 6
71'L p +m
_  Amm / oo SN (P|X])
(2rh)? [X] wm p

We now evaluate this at space-like point (t, X) such that —2 + })?|2 > 0. Thenitis
possible to choose a Lorentz frame such that t = 0. With this choice, we get

4tm
v = el ERAR ﬁsmwn

2mm ) N
= (27rh)3 }X| / %p2+m2 sin (p}XD
_ 2rm u .
= (27rh)3 }X| / \/m sinu

where a = m|X|.
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Quantum Propagation of a Relativistic Particle

We now need to evaluate the integral

o u .
l:/ du ———— sinu
—co u? + a?

We evaluate it in the complex plane. Let

V4
f R —— 1 |
(2) Vi-avztm "t

— l z (eiz _ efiz)
2i/z—ia\vz+ia
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Quantum Propagation of a Relativistic Particle

—ia

Then
l:/dz f(2)
c

We evaluate the two exponential parts separately. For the first, we consider the
following contour

B
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Quantum Propagation of a Relativistic Particle

In the limit the radius of the semicircle approaches infinity, the contour integral reduces
to

Writing z — ia = r €/® and z + ia = p €/¢ such that
—3r/2< 0 <w/2, —7/2 < 6 < 3m/2, the first exponential term contributes to the
function as

fz) = L.z
- 2ivz—iavz+ia

A. Gupta Multifunctions



Quantum Propagation of a Relativistic Particle

Along Cq, 6 = —37/2, ¢ = w/2 so that

1 /9  (a+r)e(atn

dz f(Z) = **/‘ de
/ , (atne” (a+r)
2 /2 (2a+r)1/2

u
_ / vt
2 ,az

Along C», 0 = w/2,¢ = w/2 and it is easy to check that the integral gives the same
contribution. For the second exponential term, we take a similar contour in the lower
half complex plane. Again, the contribution is easily seen to be the same as for the

upper half. Then, finally
u
=2 / du L&
NI

Ci
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Quantum Propagation of a Relativistic Particle

The wavefunction is then

dmm 1 e ue v

_ du ——
(2rh)* [R)? Ja YR 2

where (substituting back % and c),

Making a simple substitution gives

4rm 1 _, (> , (s+a)e” S
h=—-—=—58¢e S ———=
(2rh)” |X| 0 \/8(s+2a)
L
The exponential factor e=4 = e (2/me) shows that the probability of detecting the
particle outside the light-cone falls exponentially with distance with a characteristic
length equal to the compton wavelength Ac = 1/ mc of the particle.
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