Multifunctions

A. Gupta

${ }^{1}$ Department of Physics St. Stephen's College

Outline

(1) Example: $z^{1 / 2}$
(2) Fractional Powers
(3) Complex Logarithm

- Principal Branch
- Analyticity of Complex Logarithm
- Properties of Log

4. Generalized Power Function
(5) Complex Integration with Multifunctions
(6) Quantum Propagation of a Relativistic Particle

Complex Square Root

$$
f(z)=z^{1 / 2}
$$

Writing $z=r e^{i \theta}$, we get $z^{1 / 2}=r^{1 / 2} e^{i \theta / 2}$. As θ changes from $0 \rightarrow 2 \pi, z^{1 / 2}$ changes from $r^{1 / 2}$ to $-r^{1 / 2}$. Further change from $2 \pi \rightarrow 4 \pi$ restores it to $r^{1 / 2}$. Therefore $z^{1 / 2}$ is double-valued over \mathbb{C}, with 'branches'

$$
\begin{aligned}
& f_{1}(z)=r^{1 / 2} e^{i \theta / 2} \\
& f_{2}(z)=-r^{1 / 2} e^{i \theta / 2}
\end{aligned}
$$

Branch-Point

As long as we do not go around the origin, the function is single-valued and analytic (Polar C.R. Equations are satisfied). The point $z=0$ is a singular point (called 'Branch-Point') since the function is not single-valued in any region containing it.

Branch-Cut

How do we maximize the region of analyticity of $f(z)$?

Convenient choice of Branch-Cut for $f(z)=z^{1 / 2}$

We can now define

$$
z^{1 / 2}=r^{1 / 2} e^{i \theta / 2} ; \quad-\pi<\theta \leq \pi
$$

Note that we can instead define

$$
z^{1 / 2}=-r^{1 / 2} e^{i \theta / 2} ; \quad-\pi<\theta \leq \pi
$$

Consider $f(z)=z^{1 / n}$. Expressing $z=r e^{i(\theta+2 n \pi)}$, we see that this has n branches:

$$
z^{1 / n}=r^{1 / n} e^{i \theta / n} e^{i 2 \pi / n}
$$

We can define a single-valued, analytic function (analytic everywhere except at the Branch-cut/Branch-Point)

$$
z^{1 / n}=r^{1 / n} e^{i \theta / n} ; \quad-\pi<\theta \leq \pi
$$

Again, any other branch could have been taken.

Example

$f(z)=z^{1 / 3}$. We wish to calculate $f(-2 i)$. Then we take the first branch and define

$$
z^{1 / 3}=r^{1 / 3} e^{i \theta / 3} ; \quad-\pi<\theta \leq \pi
$$

With this branch, $-i=e^{-i \pi / 2}$. Then

$$
f(-i)=e^{-i \pi / 6}
$$

If we were to take the 'third' branch

$$
z^{1 / 3}=r^{1 / 3} e^{i \theta / 3} e^{i 2 \pi / 3} ; \quad-\pi<\theta \leq \pi
$$

then

$$
\begin{aligned}
f(-i) & =e^{-i \pi / 6} e^{i 2 \pi / 3} \\
& =e^{i \pi / 2} \\
& =i
\end{aligned}
$$

Problem

Define the following branch-cut for the multifunction $f(z)=z^{1 / n}$

Taking the first branch of $f(z)=z^{1 / 3}$, evaluate $f(-1-i)$.

Analyticity of $z^{a} ; \quad a \in \mathbb{R}$

Let $f(z)=z^{a}$, where a is a rational number. Clearly, it will have a finite number of branches, given by

$$
z^{a}=r^{a} e^{i a \theta} e^{i 2 n \pi a}
$$

Writing $a=p / q$, it can be seen that there will be q branches. If a is irrational, there will be an infinite number of branches. Within any one branch, expressing $z^{a}=u(r, \theta)+i v(r, \theta)$, we see that

$$
\begin{aligned}
& u(r, \theta)=r^{a} \cos [a(\theta+2 n \pi)] \\
& v(r, \theta)=r^{a} \sin [a(\theta+2 n \pi)]
\end{aligned}
$$

Then

$$
\begin{aligned}
& \frac{\partial u}{\partial r}=a r^{a-1} \cos [a(\theta+2 n \pi)] \\
& \frac{\partial u}{\partial \theta}=-a r^{a} \sin [a(\theta+2 n \pi)] \\
& \frac{\partial v}{\partial r}=a r^{a-1} \sin [a(\theta+2 n \pi)] \\
& \frac{\partial v}{\partial \theta}=a r^{a} \cos [a(\theta+2 n \pi)]
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{\partial v}{\partial \theta} & =r \frac{\partial u}{\partial r} \\
\frac{\partial u}{\partial \theta} & =-r \frac{\partial v}{\partial r}
\end{aligned}
$$

which shows that z^{a} is analytic for real a. The derivative is given by

$$
\begin{aligned}
\frac{d z^{a}}{d z} & =e^{-i \theta}\left(\frac{\partial u}{\partial r}+i \frac{\partial v}{\partial r}\right) \\
& =e^{-i \theta} a r^{a-1}[\cos [a(\theta+2 n \pi)]+i \sin [a(\theta+2 n \pi)]] \\
& =e^{-i \theta} a r^{a-1} e^{i a(\theta+2 n \pi)} \\
& =a z^{a-1}
\end{aligned}
$$

Derivative of $z^{a} ; \quad a \in \mathbb{R}$

$$
\frac{d z^{a}}{d z}=a z^{a-1}
$$

The complex logarithm $f(z)=\log (z)$ is defined through

$$
e^{\log (z)}=z
$$

Writing $\log (z)=u+i v$ and $z=|z| e^{i \theta}$

$$
e^{u} e^{i v}=|z| e^{i \theta}
$$

we get

$$
\begin{aligned}
u & =\ln |z| \\
v & =\theta+2 n \pi ; \quad n \in \mathbb{Z}
\end{aligned}
$$

Then

$$
\log (z)=\ln |z|+i(\theta+2 n \pi) ; \quad n \in \mathbb{Z}
$$

Clearly, $\log (z)$ is a multifunction with an infinit enumber of branches, labelled by n. Everytime we encircle the origin, we enter a new branch.

We can force $\log (z)$ to be single-valued by making a suitable branch cut. The 'Principal Branch' is defined by the following choice

$$
\log (z)=\ln |z|+i \theta ; \quad-\pi<\theta \leq \pi
$$

Then all the branches are given by

$$
\log (z)=\log (z)+i 2 n \pi
$$

Example

We evaluate $\log (-1-i \sqrt{3})$. Clearly, $\theta=-2 \pi / 3$ for the Principal Branch. Furthur, $|-1-i \sqrt{3}|=2$. Then

$$
\log (-1-i \sqrt{3})=\ln 2-i \frac{2 \pi}{3}
$$

Given a branch, the complex logarithm is an analytic function. Writing $\log (z)=u(r, \theta)+i v(r, \theta)$, we get

$$
\begin{aligned}
& u(r, \theta)=\ln (r) \\
& v(r, \theta)=\theta+2 n \pi
\end{aligned}
$$

Then

$$
\begin{aligned}
& \frac{\partial u}{\partial r}=\frac{1}{r} \\
& \frac{\partial u}{\partial \theta}=0 \\
& \frac{\partial v}{\partial r}=0 \\
& \frac{\partial v}{\partial \theta}=1
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{\partial v}{\partial \theta} & =r \frac{\partial u}{\partial r} \\
\frac{\partial u}{\partial \theta} & =-r \frac{\partial v}{\partial r}
\end{aligned}
$$

The derivative of the log function is

$$
\begin{aligned}
\frac{d \log z}{d z} & =e^{-i \theta}\left(\frac{\partial u}{\partial r}+i \frac{\partial v}{\partial r}\right) \\
& =e^{-i \theta} \frac{1}{r} \\
& =\frac{1}{z}
\end{aligned}
$$

Derivative of $\log z$

$$
\frac{d \log z}{d z}=\frac{1}{z}
$$

Properties of Complex Logarithm

0

$$
\begin{aligned}
& \log \left(e^{z}\right) \neq z \\
\log \left(e^{z}\right)= & \ln \left|e^{z}\right|+i \operatorname{Arg}\left(e^{z}\right) \\
= & \ln \left(e^{x}\right)+i y \text { Only if }-\pi<y \leq \pi
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \log \left(z_{1} z_{2}\right) \neq \log \left(z_{1}\right)+\log \left(z_{2}\right) \\
& \log \left(z_{1} z_{2}\right)=\ln \left|z_{1} z_{2}\right|+i \operatorname{Arg}\left(z_{1} z_{2}\right) \\
&=\ln \left|z_{1}\right|+\ln \left|z_{2}\right|+i \operatorname{Arg}\left(z_{1}\right)+i \operatorname{Arg}\left(z_{2}\right)
\end{aligned}
$$

$$
\text { only if }-\pi<\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right) \leq \pi
$$

B

$$
\log \left(\frac{z_{1}}{z_{2}}\right) \neq \log \left(z_{1}\right)-\log \left(z_{2}\right)
$$

(4)
$\log \left(z^{n}\right) \neq n \log (z) ; \quad$ Equality only if $-\pi<n \operatorname{Arg}(z) \leq \pi$

Generalized Power Function

Definition:

$$
z^{\alpha}=e^{\alpha \ln (z)} ; \quad \alpha \in \mathbb{C}
$$

Since $\log (z)$ is multivalued, so is z^{α}. A single-valued function can be defined as

$$
Z^{\alpha}=e^{\alpha \log (z)}
$$

with a branch cut and a branch point at $z=0$. Properties:
0

$$
\begin{gathered}
Z^{a} Z^{b}=Z^{a+b} \\
Z^{a} Z^{b}=e^{a \log (z)} e^{b \operatorname{Log(z)}} \\
=e^{(a+b) \log (z)} \\
=Z^{a+b}
\end{gathered}
$$

(2)

$$
\frac{z^{a}}{Z^{b}}=Z^{a-b}
$$

©

$$
\left(Z^{a}\right)^{b} \neq Z^{a b}
$$

$$
I=\int_{0}^{\infty} d x \frac{\ln x}{x^{3}+1}
$$

To evaluate this integral, we first evaluate

$$
I_{1}=\int_{0}^{\infty} d x \frac{1}{x^{3}+1}
$$

Let $f(z)=1 /\left(z^{3}+1\right)$. This has poles at $z_{1}=e^{i \pi / 3}, z_{2}=e^{i \pi}$ and $z_{3}=e^{i 5 \pi / 3}$.

Then

$$
\begin{aligned}
\oint d z f(z) & =2 \pi i \operatorname{Res}_{z=z_{1}} f(z) \\
& =2 \pi i \operatorname{Res}_{z=z_{1}} \frac{1}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)} \\
& =2 \pi i \frac{1}{\left(z_{1}-z_{2}\right)\left(z_{1}-z_{3}\right)} \\
& =\frac{2 \pi i}{3} e^{-i 2 \pi / 3}
\end{aligned}
$$

The integral along contour \mathcal{C}_{1} is

$$
I_{\mathcal{C}_{1}}=\int_{0}^{R} d r \frac{1}{r^{3}+1}
$$

Along $\mathcal{C}_{2}, z=r e^{i 2 \pi / 3} ; r \in[R, 0]$. Then $d z=e^{i 2 \pi / 3} d r$ so that

$$
I_{\mathcal{C}_{2}}=-e^{i 2 \pi / 3} \int_{0}^{R} d r \frac{1}{r^{3}+1}
$$

As $R \rightarrow \infty$, the integral along \mathcal{C}_{R} goes to zero. Then,

$$
\begin{aligned}
\left(1-e^{i 2 \pi / 3}\right) \int_{0}^{\infty} d r \frac{1}{r^{3}+1} & =\frac{2 \pi i}{3} e^{-i 2 \pi / 3} \\
\Longrightarrow I_{1} & =\frac{2 \pi i}{3} \frac{e^{-i 2 \pi / 3}}{\left(1-e^{i 2 \pi / 3}\right)} \\
& =\frac{2 \pi}{3 \sqrt{3}}
\end{aligned}
$$

We now evaluate

$$
I=\int_{0}^{\infty} d x \frac{\ln x}{x^{3}+1}
$$

We choose $f(z)=\frac{\log (z)}{z^{3}+1}$ with a branch cut for the \log function, and evaluate the following closed loop contour integral

Along $\mathcal{C}_{1}, z=r$ so that

$$
I_{\mathcal{C}_{1}}=\int_{\rho}^{R} d r \frac{\ln r}{r^{3}+1}
$$

Along $\mathcal{C}_{2}, z=r e^{i 2 \pi / 3}$ so that $d z=e^{i 2 \pi / 3} d r$. Further, $\log (z)=\ln r+i 2 \pi / 3$. Then

$$
I_{\mathcal{C}_{2}}=-e^{i 2 \pi / 3} \int_{\rho}^{R} d r \frac{\ln r}{r^{3}+1}-i \frac{2 \pi}{3} e^{i 2 \pi / 3} \int_{\rho}^{R} d r \frac{1}{r^{3}+1}
$$

The integrand has poles at $z_{1}=e^{i \pi / 3}, z_{2}=e^{i \pi}$ and $z_{3}=e^{i 5 \pi / 3}$ of which only z_{1} is of interest. Then

$$
\begin{aligned}
\oint d z f(z) & =2 \pi i \operatorname{Res}_{z=z_{1}} f(z) \\
& =2 \pi i \operatorname{Res}_{z=z_{1}} \frac{\log (z)}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)} \\
& =2 \pi i \frac{\log \left(z_{1}\right)}{\left(z_{1}-z_{2}\right)\left(z_{1}-z_{3}\right)} \\
& =\left(\frac{2 \pi i}{3}\right) \frac{i \pi}{3} e^{-i 2 \pi / 3} \\
& =-\frac{2 \pi^{2}}{9} e^{-i 2 \pi / 3}
\end{aligned}
$$

In the limit $R \rightarrow \infty$, the integral along \mathcal{C}_{R} goes to zero. Then substituting for $I_{1}=2 \pi / 3 \sqrt{3}$, we finally get

$$
\int_{0}^{\infty} d r \frac{\ln r}{r^{3}+1}=-\frac{2 \pi^{2}}{27}
$$

Quantum Propagation of a Relativistic Particle

In non-relativistic QM, the wavefunction of a particle at instant t if it is located at the origin (in a state of well-defined position) is given by

$$
\psi(\vec{x}, t)=\int_{-\infty}^{\infty} \frac{d^{3} p}{(2 \pi \hbar)^{3}} e^{-i E_{p} t / \hbar} e^{i \vec{p} \cdot \vec{x} / \hbar}
$$

where $E_{p}=\vec{p}^{2} / 2 m$ and $d^{3} p=d p_{x} d p_{y} d p_{z}$. This expression is not Lorentz invariant. To construct a Lorentz invariant expression, we conjecture that

$$
\psi(\vec{x}, t)=m c^{2} \int_{-\infty}^{\infty} \frac{d^{3} p}{(2 \pi \hbar)^{3} E_{p}} e^{-i E_{p} t / \hbar} e^{i \vec{p} \cdot \vec{x} / \hbar}
$$

where $E_{p}=\sqrt{\vec{p}^{2} c^{2}+m^{2} c^{4}}$.

To say this is Lorentz invariant is the same as saying that under $\vec{x} \rightarrow \vec{x}^{\prime}$ and $t \rightarrow t^{\prime}, \psi$ should remain the same, where (choosing x to be the direction along the Lorentz boost and working in units with $\hbar=c=1$)

$$
\begin{aligned}
x^{0^{\prime}} & =\gamma(v)\left(x^{0}-v x\right) \\
x^{\prime} & =\gamma(v)\left(x-v x^{0}\right) \\
y^{\prime} & =y \\
z^{\prime} & =z
\end{aligned}
$$

where $x^{0}=c t \equiv t$. The wavefunction is

$$
\psi(\vec{x}, t)=m \int_{-\infty}^{\infty} \frac{d p_{x} d p_{y} d p_{z}}{(2 \pi \hbar)^{3} p_{0}} e^{-i\left(p_{0} x^{0}-p_{x} x-p_{y} y-p_{z} z\right)}
$$

where $p_{0}=E_{p}=\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m^{2}}$.

Under $\left(x^{0}, x, y, z\right) \rightarrow\left(x^{0^{\prime}}, x^{\prime}, y^{\prime}, z^{\prime}\right)$, the wavefunction changes to

$$
\begin{aligned}
\psi(\vec{x}, t) & \rightarrow m \int_{-\infty}^{\infty} \frac{d p_{x} d p_{y} d p_{z}}{(2 \pi \hbar)^{3} p_{0}} e^{-i\left(p_{0} x^{0^{\prime}}-p_{x} x^{\prime}-p_{y} y^{\prime}-p_{z} z^{\prime}\right)} \\
& =m \int_{-\infty}^{\infty} \frac{d p_{x} d p_{y} d p_{z}}{(2 \pi \hbar)^{3} p_{0}} e^{-i\left(p_{0}\left[\gamma(v)\left(x^{0}-v x\right)\right]-p_{x}\left[\gamma(v)\left(x-v x^{0}\right)\right]-p_{y} y-p_{z} z\right)} \\
& =m \int_{-\infty}^{\infty} \frac{d p_{x} d p_{y} d p_{z}}{(2 \pi \hbar)^{3} p_{0}} e^{-i\left(\left[\gamma(v)\left(p_{0}+v p_{x}\right)\right] x^{0}-\left[\gamma(v)\left(p_{x}+v p_{0}\right)\right] x-p_{y} y-p_{z} z\right)}
\end{aligned}
$$

Now, we change momentum integration variables to $p_{x}^{\prime}, p_{y}^{\prime}, p_{z}^{\prime}$ where

$$
\begin{aligned}
p_{x}^{\prime} & =\gamma(v)\left(p_{x}+v p_{0}\right) \\
p_{y}^{\prime} & =p_{y} \\
p_{z}^{\prime} & =p_{z}
\end{aligned}
$$

while also defining

$$
p_{0}^{\prime}=\gamma(v)\left(p_{0}+v p_{x}\right)
$$

Then it is easy to check that the exponent becomes $\left(p_{0}^{\prime} x^{0}-p_{x}^{\prime} x-p_{y}^{\prime} y-p_{z}^{\prime} z\right)$. We now need the Jacobian for the change in vaiables

$$
d p_{x}^{\prime} d p_{y}^{\prime} d p_{z}^{\prime}=\mathcal{J}\left(\frac{p_{x}^{\prime}, p_{y}^{\prime}, p_{z}^{\prime}}{p_{x}, p_{y}, p_{z}}\right) d p_{x} d p_{y} d p_{z}
$$

where

$$
\mathcal{J}=\left|\begin{array}{lll}
\frac{\partial p_{x}^{\prime}}{\partial p_{x}} & \frac{\partial p_{x}^{\prime}}{\partial p_{y}} & \frac{\partial p_{x}^{\prime}}{\partial p_{z}} \\
\frac{\partial p_{y}^{\prime}}{\partial p_{x}} & \frac{\partial p_{y}^{\prime}}{\partial p_{y}} & \frac{\partial p_{y}^{\prime}}{\partial p_{z}} \\
\frac{\partial p_{z}^{\prime}}{\partial p_{x}} & \frac{\partial p_{z}^{\prime}}{\partial p_{y}} & \frac{\partial p_{z}^{\prime}}{\partial p_{z}}
\end{array}\right|
$$

In evaluating the partial derivatives, it should be noted that p_{0} is also a function of p_{x}, p_{y}, p_{z} through $p_{0}=\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m^{2}}$.

The Jacobian is calculated to be

$$
\begin{aligned}
\mathcal{J} & =\left\lvert\, \begin{array}{ccc}
\gamma(v)+v \gamma(v) p_{x} / p_{0} & v \gamma(v) p_{y} / p_{0} & v \gamma(v) p_{z} / p_{0} \\
0 & 1 & 0 \\
0 & 0 & 1 \\
& =\gamma(v)+v \gamma(v) p_{x} / p_{0} &
\end{array}\right. \\
& =\frac{p_{0}^{\prime}}{p_{0}}
\end{aligned}
$$

Then

$$
\begin{aligned}
d p_{x}^{\prime} d p_{y}^{\prime} d p_{z}^{\prime} & =\frac{p_{0}^{\prime}}{p_{0}} d p_{x} d p_{y} d p_{z} \\
\Longrightarrow \frac{d p_{x}^{\prime} d p_{y}^{\prime} d p_{z}^{\prime}}{p_{0}^{\prime}} & =\frac{d p_{x} d p_{y} d p_{z}}{p_{0}}
\end{aligned}
$$

Finally, the wavefunction becomes

$$
\begin{aligned}
\psi(\vec{x}, t) & \rightarrow m \int_{-\infty}^{\infty} \frac{d p_{x}^{\prime} d p_{y}^{\prime} d p_{z}^{\prime}}{(2 \pi \hbar)^{3} p_{0}^{\prime}} e^{-i\left(p_{0}^{\prime} x^{0}-p_{x}^{\prime} x-p_{y}^{\prime} y-p_{z}^{\prime} z\right)} \\
& =\psi(\vec{x}, t)
\end{aligned}
$$

and so is invariant under a Lorentz transformation. It is easy to check that in the non-relativistic limit $c \rightarrow \infty$, the wavefunction reduces to the non-relativistic one (apart from an insignificant overall phase).

Evaluation of the Wavefunction

We now evaluate

$$
\psi(\vec{x}, t)=m \int_{-\infty}^{\infty} \frac{d p_{x} d p_{y} d p_{z}}{(2 \pi \hbar)^{3} p_{0}} e^{-i\left(p_{0} x^{0}-p_{x} x-p_{y} y-p_{z} z\right)}
$$

For a given \vec{x}, the set (p_{x}, p_{y}, p_{z}) can be visualised as a vector \vec{p}. For a given $\left(p_{x}, p_{y}, p_{z}\right)$, this vector has length $p=\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}}$ and makes angle θ with \vec{x}. As (p_{x}, p_{y}, p_{z}) change in the integral, the length p and the angle θ change

Making a change of variables from $\left(p_{x}, p_{y}, p_{z}\right)$ to (p, θ, ϕ), we get

$$
\begin{aligned}
\psi(\vec{x}, t) & =\frac{m}{(2 \pi \hbar)^{3}} \int_{0}^{2 \pi} d \phi \int_{0}^{\infty} d p \frac{p^{2}}{\sqrt{p^{2}+m^{2}}} \int_{0}^{\infty} d \theta \sin \theta e^{-i p_{0} x^{0}} e^{i p|\vec{x}| \cos \theta} \\
& =\frac{4 \pi m}{(2 \pi \hbar)^{3}} \frac{1}{|\vec{x}|} \int_{0}^{\infty} d p \frac{p^{2}}{\sqrt{p^{2}+m^{2}}} e^{-i p_{0} x^{0}} \frac{\sin (p|\vec{x}|)}{p}
\end{aligned}
$$

We now evaluate this at space-like point (t, \vec{x}) such that $-t^{2}+|\vec{x}|^{2}>0$. Then it is possible to choose a Lorentz frame such that $t=0$. With this choice, we get

$$
\begin{aligned}
\psi & =\frac{4 \pi m}{(2 \pi \hbar)^{3}} \frac{1}{|\vec{x}|} \int_{0}^{\infty} d p \frac{p}{\sqrt{p^{2}+m^{2}}} \sin (p|\vec{x}|) \\
& =\frac{2 \pi m}{(2 \pi \hbar)^{3}} \frac{1}{|\vec{x}|} \int_{-\infty}^{\infty} d p \frac{p}{\sqrt{p^{2}+m^{2}}} \sin (p|\vec{x}|) \\
& =\frac{2 \pi m}{(2 \pi \hbar)^{3}} \frac{1}{|\vec{x}|^{2}} \int_{-\infty}^{\infty} d u \frac{u}{\sqrt{u^{2}+a^{2}}} \sin u
\end{aligned}
$$

where $a=m|\vec{x}|$.

We now need to evaluate the integral

$$
I=\int_{-\infty}^{\infty} d u \frac{u}{\sqrt{u^{2}+a^{2}}} \sin u
$$

We evaluate it in the complex plane. Let

$$
\begin{aligned}
f(z) & =\frac{z}{\sqrt{z-i a} \sqrt{z+i a}} \sin z \\
& =\frac{1}{2 i} \frac{z}{\sqrt{z-i a} \sqrt{z+i a}}\left(e^{i z}-e^{-i z}\right)
\end{aligned}
$$

Then

$$
I=\int_{\mathcal{C}} d z f(z)
$$

We evaluate the two exponential parts separately. For the first, we consider the following contour

In the limit the radius of the semicircle approaches infinity, the contour integral reduces to

Writing $z-i a=r e^{i \theta}$ and $z+i a=\rho e^{i \phi}$ such that $-3 \pi / 2<\theta \leq \pi / 2,-\pi / 2<\theta \leq 3 \pi / 2$, the first exponential term contributes to the function as

$$
f(z)=\frac{1}{2 i} \frac{z e^{i z}}{\sqrt{z-i a} \sqrt{z+i a}}
$$

Along $\mathcal{C}_{1}, \theta=-3 \pi / 2, \phi=\pi / 2$ so that

$$
\begin{aligned}
\int_{\mathcal{C}_{1}} d z f(z) & =-\frac{1}{2} \int_{\infty}^{0} d r \frac{(a+r) e^{-(a+r)}}{r^{1 / 2} \rho^{1 / 2}} \\
& =\frac{1}{2} \int_{0}^{\infty} d r \frac{(a+r) e^{-(a+r)}}{r^{1 / 2}(2 a+r)^{1 / 2}} \\
& =\frac{1}{2} \int_{a}^{\infty} d u \frac{u e^{-u}}{\sqrt{u^{2}-a^{2}}}
\end{aligned}
$$

Along $\mathcal{C}_{2}, \theta=\pi / 2, \phi=\pi / 2$ and it is easy to check that the integral gives the same contribution. For the second exponential term, we take a similar contour in the lower half complex plane. Again, the contribution is easily seen to be the same as for the upper half. Then, finally

$$
I=2 \int_{a}^{\infty} d u \frac{u e^{-u}}{\sqrt{u^{2}-a^{2}}}
$$

The wavefunction is then

$$
\psi=\frac{4 \pi m}{(2 \pi \hbar)^{3}} \frac{1}{|\vec{x}|^{2}} \int_{a}^{\infty} d u \frac{u e^{-u}}{\sqrt{u^{2}-a^{2}}}
$$

where (substituting back \hbar and c),

$$
a=\frac{|\vec{x}|}{(\hbar / m c)}
$$

Making a simple substitution gives

$$
\psi=\frac{4 \pi m}{(2 \pi \hbar)^{3}} \frac{1}{|\vec{x}|^{2}} e^{-a} \int_{0}^{\infty} d s \frac{(s+a) e^{-s}}{\sqrt{s(s+2 a)}}
$$

The exponential factor $e^{-a}=e^{-\frac{|\vec{x}|}{(\hbar / m c)}}$ shows that the probability of detecting the particle outside the light-cone falls exponentially with distance with a characteristic length equal to the compton wavelength $\lambda_{c}=\hbar / m c$ of the particle.

