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An Illustration

Consider the Integral

I(ω) =
∫ ∞

0
dt sin(ω0t) e−iωt

This can be thought of as a Fourier Transform of the function f (t) = θ(t) sin(ω0t). To
make sense of this integral, we evaluate it as

I(ω) = lim
ε→0+

∫ ∞
0

dt sin(ω0t) e−(ε+iω)t

This is just an analytical continuation of the function

I(z) =
∫ ∞

0
dt sin(ω0t) e−zt

to the imaginary axis. I(z) is analytic for Re(z) > 0. Expanding the sin in terms of
exponentials and evaluating integrals as antiderivatives gives (for Re(z) > 0)

I(z) =
ω0

z2 + ω2
0

Then
I(ω) =

ω0

ω2
0 − ω2
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Definition

Laplace transform of complex function f (t):

L(s) =
∫ ∞

0
dt f (t) e−st ; Re(s) ≥ σ

where σ is such that ∫ ∞
0

dt e−σt |f (t)| <∞

L(s) is analytic for Re(s) > σ.

x

yL(z) =

Z 1

0

dt f(t) e�zt

L(z) Analytic

�

Z 1

0

dt e��t |f(t)| < 1

A. Gupta Laplace Transform and Applications



An Illustration
The Laplace Transform

Applications

Definition
Relation with Fourier Transform
Inverse Laplace Transform

Relation with Fourier Transform

Consider the Fourier transform of a tim-varying signal f (t) which is switched on at a
finite time T0. Then

f̃ (ω) =
∫ ∞

T0

dt f (t) e−iωt

Any physical signal will die down as t →∞. Shifting the t integral gives

f̃ (ω) = e−iωT0

∫ ∞
0

dt f (t) e−iωt

This is a ‘half-interval’ Fourier Transform. Then fourier transform of any physical signal
can be reduced to a half-integral transform.
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Half-Interval Fourier Transform

Let
f̃ (ω) =

∫ ∞
0

dt f (t) e−iωt

where it is assumed that this integral exists. We generalise to the complex plane

f̃ (z) =
∫ ∞

0
dt f (t) e−zt ; Re(z) ≥ 0

where clearly this is a Laplace Transform. f̃ (z) is analytic for Re(z) > 0. Then f̃ (ω) is
the analytic continuation of f̃ (z) to the imaginary axis.

x

y

i!

Fourier Transform

f̃(z) =

Z 1

0

dt f(t) e�zt

f̃(z) Analytic

f̃(!)
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L(α+ iω) =
∫ ∞

0
dt f (t) e−αt e−iωt ; α ≥ σ

Extend the definition of f (t) such that f (t) = 0 for t < 0. Then

L(α+ iω) =
∫ ∞
−∞

dt f (t) e−αt e−iωt

This can be visualised as a Fourier transform of f (t) e−αt . Using inverse Fourier
transform we get

f (t) e−αt =

∫ ∞
−∞

dω
2π
L(α+ iω) eiωt

which gives

f (t) =

∫ ∞
−∞

dω
2π
L(α+ iω) e(α+iω)t

=

∫
C

dz
2πi
L(z) ezt

where C is a contour parallel to the imaginary axis and shifted by α.
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Summary

Laplace Transform

L(s) =
∫ ∞

0
dt f (t) e−st ; Re(s) ≥ σ

Inverse Laplace Transform

f (t) =
∫
C

dz
2πi
L(z) ezt

x

yf(t) =

Z

C
dz L(z) ezt

C

↵
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Damped Harmonic Oscillator

m
d2x(t)

dt2
+ b

dx(t)
dt

+ k x(t) = 0; x(0) = x0,
dx
dt

∣∣∣∣
t=0

= 0

We take Laplace Transform of both sides

m L
[

d2x(t)
dt2

]
+ b L

[
dx(t)

dt

]
+ k L [x(t)] = 0

L
[

dx(t)
dt

]
=

∫ ∞
0

dt
dx(t)

dt
e−st

=

∫ ∞
0

dt
[

d
dt

(
x(t) e−st

)
+ s x(t) e−st

]
= −x0 + s L [x(t)]

Similarly

L
[

d2x(t)
dt2

]
= −s x0 + s2 L [x(t)]
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Substituting in the D.E gives

L [x(t)] = x0
ms + b

ms2 + bs + k

= x0
s + b/m

(s + b/2m)2 + ω2
1

= x0
s + b/2m

(s + b/2m)2 + ω2
1

+ x0
b/2m

(s + b/2m)2 + ω2
1

where ω1 =
√

k/m − b2/4m2. We now need to take the inverse transform.
Observation: Each term is the Laplace transform of some function shifted by b/2m.

Property: If L(s) is the Laplace transform of f (t) then L(s + a) is the Laplace
Transform of f (t) e−at . Then we just need to determine Inv. Lap. Trans. of s/(s2 + ω2

1)

and 1/(s2 + ω2
1).
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Property: If L(s) is the Lap. Trans. of f (t) then

s L(s) = f (0) + L
[

df (t)
dt

]
Therefore we just need to evaluate the Inv. Lap. Trans. of L(s) = 1/(s2 + ω2

1).
Recall:

f (t) =
∫
C

dz
2πi
L(z) ezt

where C is a contour such that all the poles of L(z) are to the left of the contour

x

y

C

Poles of L(z)
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Here L(z) = 1/(z2 + ω2
1) with poles at z = ±iω1.

x

y

C

L(z) =
1

z2 + !2
1

i !1

�i !1

R

f (t) =

∫
C

dz
2πi
L(z) ezt

= lim
R→∞

∮
dz
2πi
L(z) ezt

=
sin (ω1t)
ω1

where the contribution form the semi-circular part of the contour vanishes as R →∞.
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Then

x(t) = L−1 [L [x(t)]]

= x0 L−1

[
s + b/2m

(s + b/2m)2 + ω2
1

]
+ x0

b
2m
L−1

[
1

(s + b/2m)2 + ω2
1

]

= x0 e−bt/2m df (t)
dt

+ x0
b

2m
e−bt/2m f (t)

= x0 e−bt/2m
[

cos (ω1t) +
b

2mω1
sin (ω1t)

]
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