Laplace Transform and Applications

A. Gupta
${ }^{1}$ Department of Physics
St. Stephen's College

Outline

(9) An Illustration
(2) The Laplace Transform

- Definition
- Relation with Fourier Transform
- Inverse Laplace Transform
(3) Applications
- Linear Differential Equations: Damped Harmonic Oscillator

An Illustration

Consider the Integral

$$
I(\omega)=\int_{0}^{\infty} d t \sin \left(\omega_{0} t\right) e^{-i \omega t}
$$

This can be thought of as a Fourier Transform of the function $f(t)=\theta(t) \sin \left(\omega_{0} t\right)$. To make sense of this integral, we evaluate it as

$$
I(\omega)=\lim _{\epsilon \rightarrow 0+} \int_{0}^{\infty} d t \sin \left(\omega_{0} t\right) e^{-(\epsilon+i \omega) t}
$$

This is just an analytical continuation of the function

$$
I(z)=\int_{0}^{\infty} d t \sin \left(\omega_{0} t\right) e^{-z t}
$$

to the imaginary axis. $I(z)$ is analytic for $\operatorname{Re}(z)>0$. Expanding the sin in terms of exponentials and evaluating integrals as antiderivatives gives (for $\operatorname{Re}(z)>0$)

$$
I(z)=\frac{\omega_{0}}{z^{2}+\omega_{0}^{2}}
$$

Then

$$
I(\omega)=\frac{\omega_{0}}{\omega_{0}^{2}-\omega^{2}}
$$

Definition

Laplace transform of complex function $f(t)$:

$$
\mathcal{L}(s)=\int_{0}^{\infty} d t f(t) e^{-s t} ; \quad \operatorname{Re}(s) \geq \sigma
$$

where σ is such that

$$
\int_{0}^{\infty} d t e^{-\sigma t}|f(t)|<\infty
$$

$\mathcal{L}(s)$ is analytic for $\operatorname{Re}(s)>\sigma$.

Relation with Fourier Transform

Consider the Fourier transform of a tim-varying signal $f(t)$ which is switched on at a finite time T_{0}. Then

$$
\tilde{f}(\omega)=\int_{T_{0}}^{\infty} d t f(t) e^{-i \omega t}
$$

Any physical signal will die down as $t \rightarrow \infty$. Shifting the t integral gives

$$
\tilde{f}(\omega)=e^{-i \omega T_{0}} \int_{0}^{\infty} d t f(t) e^{-i \omega t}
$$

This is a 'half-interval' Fourier Transform. Then fourier transform of any physical signal can be reduced to a half-integral transform.

Half-Interval Fourier Transform

Let

$$
\tilde{f}(\omega)=\int_{0}^{\infty} d t f(t) e^{-i \omega t}
$$

where it is assumed that this integral exists. We generalise to the complex plane

$$
\tilde{f}(z)=\int_{0}^{\infty} d t f(t) e^{-z t} ; \quad \operatorname{Re}(z) \geq 0
$$

where clearly this is a Laplace Transform. $\tilde{f}(z)$ is analytic for $\operatorname{Re}(z)>0$. Then $\tilde{f}(\omega)$ is the analytic continuation of $\tilde{f}(z)$ to the imaginary axis.

$$
\mathcal{L}(\alpha+i \omega)=\int_{0}^{\infty} d t f(t) e^{-\alpha t} e^{-i \omega t} ; \quad \alpha \geq \sigma
$$

Extend the definition of $f(t)$ such that $f(t)=0$ for $t<0$. Then

$$
\mathcal{L}(\alpha+i \omega)=\int_{-\infty}^{\infty} d t f(t) e^{-\alpha t} e^{-i \omega t}
$$

This can be visualised as a Fourier transform of $f(t) e^{-\alpha t}$. Using inverse Fourier transform we get

$$
f(t) e^{-\alpha t}=\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \mathcal{L}(\alpha+i \omega) e^{i \omega t}
$$

which gives

$$
\begin{aligned}
f(t) & =\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \mathcal{L}(\alpha+i \omega) e^{(\alpha+i \omega) t} \\
& =\int_{\mathcal{C}} \frac{d z}{2 \pi i} \mathcal{L}(z) e^{z t}
\end{aligned}
$$

where \mathcal{C} is a contour parallel to the imaginary axis and shifted by α.

Summary

Laplace Transform

$$
\mathcal{L}(s)=\int_{0}^{\infty} d t f(t) e^{-s t} ; \quad \operatorname{Re}(s) \geq \sigma
$$

Inverse Laplace Transform

$$
f(t)=\int_{\mathcal{C}} \frac{d z}{2 \pi i} \mathcal{L}(z) e^{z t}
$$

Damped Harmonic Oscillator

$$
m \frac{d^{2} x(t)}{d t^{2}}+b \frac{d x(t)}{d t}+k x(t)=0 ; \quad x(0)=x_{0},\left.\quad \frac{d x}{d t}\right|_{t=0}=0
$$

We take Laplace Transform of both sides

$$
\begin{gathered}
m \mathcal{L}\left[\frac{d^{2} x(t)}{d t^{2}}\right]+b \mathcal{L}\left[\frac{d x(t)}{d t}\right]+k \mathcal{L}[x(t)]=0 \\
\begin{aligned}
\mathcal{L}\left[\frac{d x(t)}{d t}\right] & =\int_{0}^{\infty} d t \frac{d x(t)}{d t} e^{-s t} \\
& =\int_{0}^{\infty} d t\left[\frac{d}{d t}\left(x(t) e^{-s t}\right)+s x(t) e^{-s t}\right] \\
& =-x_{0}+s \mathcal{L}[x(t)]
\end{aligned}
\end{gathered}
$$

Similarly

$$
\mathcal{L}\left[\frac{d^{2} x(t)}{d t^{2}}\right]=-s x_{0}+s^{2} \mathcal{L}[x(t)]
$$

Substituting in the D.E gives

$$
\begin{aligned}
\mathcal{L}[x(t)] & =x_{0} \frac{m s+b}{m s^{2}+b s+k} \\
& =x_{0} \frac{s+b / m}{(s+b / 2 m)^{2}+\omega_{1}^{2}} \\
& =x_{0} \frac{s+b / 2 m}{(s+b / 2 m)^{2}+\omega_{1}^{2}}+x_{0} \frac{b / 2 m}{(s+b / 2 m)^{2}+\omega_{1}^{2}}
\end{aligned}
$$

where $\omega_{1}=\sqrt{k / m-b^{2} / 4 m^{2}}$. We now need to take the inverse transform.
Observation: Each term is the Laplace transform of some function shifted by $b / 2 m$.

Property: If $\mathcal{L}(s)$ is the Laplace transform of $f(t)$ then $\mathcal{L}(s+a)$ is the Laplace Transform of $f(t) e^{-a t}$. Then we just need to determine Inv. Lap. Trans. of $s /\left(s^{2}+\omega_{1}^{2}\right)$ and $1 /\left(s^{2}+\omega_{1}^{2}\right)$.

Property: If $\mathcal{L}(s)$ is the Lap. Trans. of $f(t)$ then

$$
s \mathcal{L}(s)=f(0)+\mathcal{L}\left[\frac{d f(t)}{d t}\right]
$$

Therefore we just need to evaluate the Inv. Lap. Trans. of $\mathcal{L}(s)=1 /\left(s^{2}+\omega_{1}^{2}\right)$. Recall:

$$
f(t)=\int_{\mathcal{C}} \frac{d z}{2 \pi i} \mathcal{L}(z) e^{z t}
$$

where \mathcal{C} is a contour such that all the poles of $\mathcal{L}(z)$ are to the left of the contour

Here $\mathcal{L}(z)=1 /\left(z^{2}+\omega_{1}^{2}\right)$ with poles at $z= \pm i \omega_{1}$.

$$
\begin{aligned}
f(t) & =\int_{\mathcal{C}} \frac{d z}{2 \pi i} \mathcal{L}(z) e^{z t} \\
& =\lim _{R \rightarrow \infty} \oint \frac{d z}{2 \pi i} \mathcal{L}(z) e^{z t} \\
& =\frac{\sin \left(\omega_{1} t\right)}{\omega_{1}}
\end{aligned}
$$

where the contribution form the semi-circular part of the contour vanishes as $R \rightarrow \infty$.

Then

$$
\begin{aligned}
x(t) & =\mathcal{L}^{-1}[\mathcal{L}[x(t)]] \\
& =x_{0} \mathcal{L}^{-1}\left[\frac{s+b / 2 m}{(s+b / 2 m)^{2}+\omega_{1}^{2}}\right]+x_{0} \frac{b}{2 m} \mathcal{L}^{-1}\left[\frac{1}{(s+b / 2 m)^{2}+\omega_{1}^{2}}\right] \\
& =x_{0} e^{-b t / 2 m} \frac{d f(t)}{d t}+x_{0} \frac{b}{2 m} e^{-b t / 2 m} f(t) \\
& =x_{0} e^{-b t / 2 m}\left[\cos \left(\omega_{1} t\right)+\frac{b}{2 m \omega_{1}} \sin \left(\omega_{1} t\right)\right]
\end{aligned}
$$

