Motivation for Complex Numbers

A. Gupta
${ }^{1}$ Department of Physics
St. Stephen's College

Outline

(1) Invitation: Cubic Equations
(2) Complex Numbers
(3) The Complex Plane

4 Polar Representation

Solution to Cubic Equations

$$
x^{3}=3 p x+2 q
$$

A solution will always exist.

Algebraic solution:

$$
\begin{aligned}
& \quad x=\left[q+\left(q^{2}-p^{3}\right)^{1 / 2}\right]^{1 / 3}+\left[q-\left(q^{2}-p^{3}\right)^{1 / 2}\right]^{1 / 3} \\
& p=5, q=2 \\
& \quad x=\left[2+(-121)^{1 / 2}\right]^{1 / 3}+\left[2-(-121)^{1 / 2}\right]^{1 / 3} \\
& x=4 \text { is a solution. }
\end{aligned}
$$

Conjecture: $\sqrt{-121}=11 i$

$$
x=[2+11 i]^{1 / 3}+[2-11 i]^{1 / 3}
$$

Conjecture: $\sqrt{2+11 i}=2+a i, \sqrt{2-11 i}=2-a i, a \in \mathbb{R}$ Assuming 'intuitive’ algebraic rules (Closure, Commutative, Associative, Distributive properties), conjecture consistent with $a= \pm 1$

Complex Algebra

Complex number: $z=x+i y \quad x, y \in \mathbb{R}$ Algebraic rules for addition and multiplication:

$$
z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}
$$

$$
\begin{gathered}
z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right) \\
z_{1} \cdot z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right)
\end{gathered}
$$

Factorization

Factorization of $x^{n}-1$

$$
\begin{aligned}
x^{2}-1 & =(x+1)(x-1) \\
x^{3}-1 & =(x-1)\left(x^{2}+x+1\right) \\
x^{4}-1 & =(x-1)(x+1)\left(x^{2}+1\right)
\end{aligned}
$$

Visual Factorization

$$
x^{2}-1=(x+1)(x-1)
$$

$$
x^{2}-1=\left(P C_{1}\right)\left(P C_{2}\right)
$$

Visual Factorization of $x^{4}-1$

$$
x^{4}-1=(x-1)(x+1) \sqrt{x^{2}+1} \sqrt{x^{2}+1}
$$

$$
x^{4}-1=\left(P C_{1}\right)\left(P C_{2}\right)\left(P C_{3}\right)\left(P C_{4}\right)
$$

Visual factorization of $x^{3}-1$

$$
\begin{aligned}
x^{3}-1 & =(x-1)\left(x^{2}+x+1\right) \\
& =(x-1) \sqrt{(x+1 / 2)^{2}+(\sqrt{3} / 2)^{2}} \sqrt{(x+1 / 2)^{2}+(\sqrt{3} / 2)^{2}}
\end{aligned}
$$

The Complex Plane

Complex numbers as 'vectors'

Visualization of addition of complex numbers: Parallelogram Rule

Polar Representation

Polar Representation

$$
z=r(\cos \theta+i \sin \theta)
$$

Euler's formula

Euler's Formula:

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

where

$$
\begin{aligned}
e^{i \theta} & =1+i \theta+\frac{1}{2!}(i \theta)^{2}+\frac{1}{3!}(i \theta)^{3}+\frac{1}{4!}(i \theta)^{4}+\ldots . \text { (definition) } \\
& =\left(\theta-\frac{1}{3!} \theta^{3}+\frac{1}{5!} \theta^{5} . .\right)+i\left(1-\frac{1}{2!} \theta^{2}+\frac{1}{4!} \theta^{4} . .\right) \\
& =\cos \theta+i \sin \theta
\end{aligned}
$$

Given series definition of e^{a}, it follows

$$
e^{a} e^{b}=e^{a+b} \quad a, b \in \mathbb{C}
$$

$$
\begin{aligned}
z_{1} \cdot z_{2} & =r_{1} e^{i \theta_{1}} r_{2} e^{i \theta_{2}} \\
& =\left(r_{1} r_{2}\right) e^{i\left(\theta_{1}+\theta_{2}\right)}
\end{aligned}
$$

Visualization of product of complex numbers:

