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Chapter 1

What is Statistical Mechanics?

1.1 A few questions

We begin by posing a few questions

• Why are physical properties of steam, water and ice different, though they consist of the same kind of
molecule (water)? Why is it that most pure substances show such ‘phases’, with similar qualitative
properties, even though the microscopic constituents are very different?

• What is the origin of ferromegnetism, and why are some aspects of ferromagnetism so similar to
those of transitions between phases of water?

• Why is there an ‘arrow of time’? Even though microscopic physics is time symmetric (barring
exceptions of some quantum mechanical phenomena), why does time seem to ‘flow’ from past to
future?

• What is information, and how is it related to entropy (which you have encountered in thermodynam-
ics)?

• Can all this be understood as consequences of microscopic ‘fundamental’ laws of Physics, or are these
phenomena a consequence of entirely new kinds of laws?

In this course, we will try to address these questions. We will observe that so long as a physical system
consists of a small number of constituents, microscopic laws govern dynamics of the system. However,
as the number of constituents becomes larger, a completely new set of statistical laws emerge, which are
apparently insensitive to the microscopic physics. Further, these new laws indicate an arrow of time, even
though such an ‘arrow’ is absent in the microscopic laws.

1.2 Classical Dynamics

We briefly review classical, Newtonian Physics. The idea is to try and see if an ‘arrow of time’ emerges
from time-symmetric classical laws, as the number of particles becomes ‘large’ 1. Later in the course, we
will try to see how such a behaviour might emerge from Quantum Mechanics.
Consider a system of N interacting particles whose dynamics is governed by Newton’s Laws

mi
d2~ri
dt2

= −~∇iU (1.1)

where U =
∑

ij Uij is the total potential energy of the system, equal to the sum over the interaction
potential energy of pairs of particles. Given the position and velocity of all the particles at any one

1By large, we usually mean of the order of Avogadro number, though much smaller systems will typically still show a
time-asymmetric behaviour

1
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instant of time, say, t = 0, these equations, in principle, allow us to uniquely predict these at any other
instant of time t, for both t > 0 and t < 0. That is, given ~ri(0) and ~vi(0) = ~̇ri(0), we can compute
~ri(t) and ~v(t) = ~̇ri(t) for t > 0 or t < 0. Further, these equations are invariant under t → −t. This
implies the following: say, we start with a configuration ~ri(0), ~vi(0). This evolves to a new configuration
~ri(τ), ~vi(τ) at instant t = τ (for definiteness, we assume here that τ > 0). Now, say we start with the
configuration ~r′i(0) = ~ri(τ), ~v′i(0) = −~vi(τ). That is, our new initial configuration is the same as the
previous configuration at time τ , except with velocities of all the particles reversed. The time-symmetric
nature of the equations implies the following: starting with this new initial configuration at t = 0, the
configuration we obtain at time τ will be the same as the previous configuration at t = 0, but again with
all velocities reversed

Figure 1.1: Time-Reversal symmetry in Classical Physics

In other words, if we were to record a motion picture of the first evolution and run it backward, we
will observe the second evolution. This has the implication that if we were to record the time evolution of
a classical system of particles and run it backward, the resulting time-reversed motion picture is realizable
in nature. This leads to the following puzzle: if we drop a glass on the floor, it shatters into pieces that
eventually come to rest on the floor. If we were to record a motion picture and run it backward, we would
see the shattered pieces come together, form the glass, and rise up to our hand. Then, this should be a
physically realisable process. However, we never see it happen. We need to be a little careful here. When
discussing the time-symmetric nature of Newton’s laws, we analysed an isolated system of particles (this
is why there exists a conserved energy and a potential energy function for the system). In the ‘shattering
of glass’ example, the glass is not an isolated system. Even if we ignore effects due to air friction, the glass
interacts with the floor when it shatters. If we are to construct a time-reversed motion picture, we should
also include the dynamics of the floor, which further consists of atoms. When the glass shatters, it loses
momentum and energy to the particles constituting the floor, which take away this momentum and energy.
One can visialise it as a wave spreading out on the floor, with atoms/molecules of the floor vibrating about
their equilibrium positions. If we include this in our motion picture and then run it backward, we should
see this wavefront converge, lose momentum and energy to the shattered pieces, till they come together,
get ‘glued’ (atoms form bonds once again to recreate the original solid structure), and rise up to our hand.
Why is it that we never see this happen? We shall see that at some level, it can be explained away ‘easily’
using ideas of probability. However, if we probe deep enough, there will still remain a mystery.

1.3 Phase Space

To resove this paradox, we need a convenient way to visualise the state of a system of N particles. The
state is completely described if we specify the position and velocity (equivelently, momentum) of each
particle. One way to visualise the system is to construct a 6-dimensional space, with three ‘coordinate’
axes reserved for position coordinates and three for momentum components. Then, the state of the system
at any instant (complete specification of these six numbers for each particle) will be represented as N
points in this space. This swarm of points will move about in this space with time, under Newtonian
dynamics. However, a much more convenient way to visualise the system is to instead construct a 6N
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dimensional space, with 6N ‘coordinate’ axes, 3N for position coordinates and another 3N for momentum
components for all the particles. Then, the state of the system will be a single point in this space. This
‘space’ corresponding to the state of the system is known as Phase Space

Figure 1.2: Phase Space

As the system evolves, this point will move around in this space (for convenience, we will collectively
display the momentum components as ‘p’ and position coordinates as ‘x’)

Figure 1.3: Motion of representative point in Phase Space

The region of phase space available for the representative point will depend on the (conserved) energy
of the system and the volume available to the system. For instance, for a system of identical particles
of mass m constrained within a cubical box of volume V , the position coordinates are constrained to lie
within this volume. Further, if we assume that the box is (practically) infinitely massive compared to the
system and further assume that the collisions of the partiles with the walls of the box are elastic, then the
mechanical energy of the system of particles is conserved. If the system starts out in a configuration such
that the total energy is E, then the position coordinates and the momentum components are constrained
by the equation

3N∑
i=1

p2
i

2m
+ U (q1, q2, .., q3N ) = E (1.2)

where we use a convenient notation in which the 3N position coordinates of all the particles are
labelled q1, q2, .., q3N and momentum components lablelled p1, p2, .., p3N . Then, q1 = x1, q2 = y1, q3 =
z1, q4 = x2, q5 = y2, ...., q3N = zN and p1 = px1, p2 = py1, p3 = pz1, p4 = px2, p5 = py2, ...., p3N = pzN .
Equation (1.5) is a single equation in 6N variables, whcih, when visualised in the 6N dimensional phase
space, will result in a 6N − 1 dimensional ‘hypersurface’ on whcih the representative point moves
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Figure 1.4: Energy Hypersurface

1.4 Microscopic vs Macroscopic

An exact specification of position and momentum of every particle of the system defines what is known
as a Microstate if the system. The representative point in phase space corresponds to a microstate, since
given the location of the point, we know the exact position and momentum of all the particles of the
system. However, for a macroscopic system consisting of a large number of particles, it impossible to
know the precise position and momentum of every particle. Fortunately, one is not interested in such a
detailed description of the system. Instead, what one might be more interested in, for example, could be
the spatial density distribution of the particles, and how much momentum such a distribution carries at a
given point. In such a description, one effectively treats the system as a fluid-like entity, without worrying
about the ‘graininess’ of the system. It should be noted that in this description, one is not interested in
which particle occupies a given point and how much momentum it carries. If we could somehow label
all the particles, then given any such fluid-like configuration in which at different points in space there
is some density of particles, with particles in the neightborhood of that point carrying some momentum,
if we just interchanged particle labels (which would change the microstate), we would not change the
macroscopic state of this fluid. In other words, given such a macroscopic distribution, there are many (we
will soon learn to quantify ‘how many’) microstates corresponding to the same macroscopic description,
each differing by a simple interchange of particle between any two points in space (it is assumed when such
an interchange occurs, the momentum of the particle occupying a given spatial point remains unchanged,
leaving the momentum distribution of the fluid unchanged). Such a macroscopic description of the system
is known as a Macrostate of the system. What one is interested in is how such a macrostate evolves with
time, given the macrostate at any one instant. Then, as soon as we shift our focus from the microstate to
the macrostate, we are losing information (we could think of the specification of position and momentum
of each particles as encoding information). Given this ignorance about the precise microstate, we are left
with a region of phase space in which the representative point of the system could lie. For definiteness, say
we have a gas confined to a container of volume V0 at some time t0. Let the energy of the gas atoms be E.
The volume occupied by the gas and its total energy specifies a macrostate M0 of the gas, corresponding
to which there can be many microstates. Then, the representative point of the system at t0 could lie in a
region ΓM0 of the phase space, where each point within this region corresponds to a different distribution
of positions and velocities of the atoms, such that the volume they occupy is V0 and their energy being E
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Figure 1.5: Initial Macrostate

Now, say this container is placed within a larger container of volume V > V0, and is opened, so that
the gas can escape into the larger container. Experience tells us that the gas will expand and eventually
homogeneously occupy the larger available volume. However, nothing in the microscopic dynamics of the
gas particles prevents the gas contracting to fill a smaller volume within the original container (we can
visualise another, yet smaller container within the container of volume V0). For, since we always observe
gases expanding spontaneously, if we could record a motion picture of this expansion and run it backward, it
would show the gas contract, and will be a possible physical process because of the time-reversal symmetry
of the dynamical equations (assumed to be classical). Then, why is it no matter how many times we
conduct such an experiment, we will always observe the gas expand to fill the larger volume? Given the
initial macrostate M0, the system’s reresentative point could be anywhere within the region ΓM0 . That
is, there are many microstates that the system could have been in. Say, the system was in microstate X0.
With time, this microstate will change to X(t). This will also result in a change of the macrostate to M(t)
(the gas would occupy a different volume, etc.). Corrsepondingly, the region of phase space within which
the representative point of the system could lie will change to ΓM(t)

Figure 1.6: Evolution of Macrostate

The question we wish to address is whether this evolution will make the system of gas particles occupy
a larger or smaller volume at time t. At this stage, it is useful to relate the ‘size’ ΓM of the region of phase
space corresponding to a macrostate to the physical volume V occupied by the gas particles. This size
will just be the ‘volume’ of the phase space, given the constraints that all the 3N coordinates have to be
constrained to lie within region V of physical space and that the total energy of the system is E. Let us
assume for simplicity that the interactions between the particles can be ignored. Then, the 3N momenta
are constrained by

3N∑
i=1

p2
i

2m
= E (1.3)

Then, the volume of he region of phase space will be

ΓM =

∫
E,V

dq1dq2..dq3Ndp1dp2..dp3N (1.4)
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where the subscript E, V in the integral implies the volume and energy constraints. The q and p integrals
are independent, the q integral yielding V N , since for any one particle,∫

dxdydz = V

Then

ΓM = V N

∫
E
dp1dp2..dp3N

At this stage, it is useful to assume that we do not have precise information about the energy of the system
(there will always be some uncertainty in this measurement, limited by the measuring apparatus). Say,
the energy of the system lies between E and E + δE. Then, the phase space integral is

ΓM = V N

∫
E,δE

dp1dp2..dp3N

where the subscript E, δE implies the constraint

E <

3N∑
i=1

p2
i

2m
< E + δE (1.5)

which can be written as
2mE < p2

1 + p2
2..+ p2

3N < 2m(E + δE) (1.6)

The relation (1.6) describes a spherical shell in a 3N dimensional space with inner radius
√

2mE and outer
radius

√
2m(E + δE). Therefore, the momentum integral equals the volume of this spherical shell. To

compute it, we need to know the expression for the volume of an n-dimensional sphere of radius R. This
is given by 2

Vn(R) =
πn/2

Γ(n/2 + 1)
Rn (1.7)

Then, the volume of a spherical shell with radius between R and R+ δR is

δVn(R) = n
πn/2

Γ(n/2 + 1)
Rn−1δR (1.8)

The momentum integral is then∫
E,δE

dp1dp2..dp3N = δV3N (
√

2mE)

=
π3N/2

Γ(3N/2)
(2m)3N/2E3N/2−1δE

Then the volume of the ‘accessible phase space’ corresponding to macrostate with volume V and energy
between E and E + δE is

ΓM =
π3N/2

Γ(3N/2)
(2m)3N/2V NE3N/2−1δE (1.9)

As the microstate and macrostate of the system change, the energy, being conserved, does not change.
However, the volume changes and eqn.(1.9) tells us that as a function of the physical volume V , the
‘accessible phase space’ volume changes exponentially with the number of particles of the system

ΓM ∝ V N (1.10)

We are now ready to analyse what happens when we open the container of volume V0, within a larger
container of volume V . Will the gas exapnd to fill volume V or contract to occupy a smaller volume?

2See appendix
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When we open the container, the representative point of the system has more of phase space accessible to
it, since the available physical volume is increased. This point is constantly moving around, so the question
is, will it move such that at time t > t0, it corresponds to a macrostate with volume V > V0, rather than
one with volume V < V0?

Figure 1.7: Possible Evolutions of Macrostate

The key here is the relative phase space volumes of regions ΓM(V0),ΓM(V <V0) and ΓM(V >V0). From
(1.10), it follows that

ΓM(V )

ΓM(V0)
=

(
V

V0

)N
(1.11)

where for a macroscopic system, N could be of order NA or more. If V is even a few percent smaller than
V0, for a macroscopic system, the ratio if vanishingly small. To see this, we take the (natural) logarithm
of both sides of eqn(1.11), assuming that V = V0 − δV , where δV/V0 << 1

ln

(
ΓM(V )

ΓM(V0)

)
= N ln

(
V0 − δV
V0

)
= N ln

(
1− δV

V0

)
' −N δV

V0

Therefore,
ΓM(V )

ΓM(V0)
' e−N(δV/V0) (1.12)

Given N ∼ NA, this gives
ΓM(V )

ΓM(V0)
' e−1023(δV/V0) (1.13)

No matter how small δV/V is on a macrocopic scale, the 1023 in the exponent will make the ratio of phase
space volumes, for all practical purposes, zero. Then, the tiniest decrease in the physical volume of the
gas leads to the phase space volume of the resulting microstate practically vanish. Equivalently, the tiniest
increase in physical volume makes the phase space volume of the new macrostate practcally infinitely larger
than the original one. Now we see why the gas never contracts, but is always seen to expand. Given the
relative sizes of phase space volume corresponding to the expanded and contracted state, any motion of
the representative point is overwhelmingly likely to take it to the macrostate corresponding to expansion
of the gas. Given the initial macrostate, for which there are many possible microstates, there will be
microstates which will lead to the gas contract. But, the number of such microstates would be vanishingly
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small, compared with the number of microstates which will lead to expansion. This is the idea of typicality,
at the heart of the foundarions of Statistical Mechanics. Typical microstates will lead to expansion of the
gas, and atypical ones to contraction. Further, an overwhelmingly large fraction of microstates for a given
macrostate will be typical, with ‘overwhelming’ being a gross understatement for macroscopic systems 3.
Then, this is why we see an ‘arrow of time’: systems evolve preferentially in one direction because their
evolution in the other direction would be overwhelmingly improbable. In fact, given the numbers we have
just encountered, for all practical purposes, it will never happen.
This idea is at the heart of Statistical Mechanics: the idea of typicality. Similar arguments exist when
one describes microscopic physics using quantum mechanics, which indeed is how microscopic phenomena
should, in principle, be described. However, as compelling as these arguments seem, they are unfortunately
incomplete. This is because, since there is in principle no preferred direction of time (in the dynamical
equations, t → −t produces no change), we can flip this argument on its head by taking t → −t in the
previous discussion. We will then conclude that given a macrostate of the gas in question, with probability
practically unity, it must have evolved from a macrostate in which the gas occupied a larger volume. Then,
we have the following interesting situation: given a macrostate of the gas, the probability that it evolves
into the future such that the gas expands is practically unity, and the probability that this macrostate in
turn evolved from one in the past in which the gas occupied a larger volume is also practically unity! These
subtle issues point to a more non-trivial origin of the arrow of time. For a detailed discussion, see..............

1.5 Evolution towards Equilibrium

Given that the macrostate of a system of particles evolves such that it occupies increasingly larger volumes
of phase space, when does this evolution stop? The macrostate at which the evolution stops is called
the Equilibrium Macrostate. It is clear that this is the macrostate for which, consistent with external
constraints (such as volume, etc.), the phase space volume is a maximum. Then, given constraints on a
system, the problem of determining the equilibrium properties of the system reduces to an extremisation
principle: the principal of maximisation of available phase space volume, subject to constraints. Since
the phase space volume is an exponential function of such constraints (the exponent being of the order of
Avogadro number), it is mathematically prudent to extremise its logarithm, which tames the sensitivity
to any variation (an exponential function with such a large exponent is extremely sensitive to any changes
in parameters, even the tiniest change potentially bringing aabout a substantial change in the function).
Further, it is useful to visualise the phase space being divided into elementary cells, such that the volume
can be measured in units of volume of such an elementary cell. It is useful to divide each coordinate
into segments of size ∆q and each momentum component into segments of size ∆p, such that ∆q∆p = h,
h being an arbitrary, ‘small’ dimensional quantity (we will eventually identify it as Planck’s constant,
though here it is just an arbitrary, small quantity with dimensions of Planck’s constant). Then, for a
system of N particles, the elementary cell in phase space will have volume h3N . The quantity Γ/h3N is
the volume of phase space in units of this elementary volume. It is also useful to think of it as the number
of microstates accessible to the sustem for a given macrostate, where we assume that the entire region
within any one elementary cell is counted as a single microstate. Extremising this ratio will be equivalent
to extremising the phase space volume, with the added benefit that this quantity is dimensionless, so the
logarithm of this quantity will be a pure number. We now observe that for a system of N identical particles,
there is an apparent redundancy in the number of microstates estimated, since this counting includes a
simple interchange of particles, all else being same. Since these particles are identical, such microstates
are indistinguishable, in the sense that if we could somehow measure the position and momentum of every
particle, then such a measurement will yield the same information for any microstates differing simply by

3The ‘atypical’ microstates are very sensitive to perturbation. The tiniest change is expected to render them ‘typical’. This
is easily demonstrated by simulating a system of elastically colliding billiard-balls in a rectangular box. Then, such microstates
are isolated in phase space, with neighboring microstates being typical. This can be attributed to chaotic dynamics of the
system. Chaos is often cited as the reason for almost all microstates being typical.
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interchange of particles 4. To account for this redundancy, we define the Thermodynamic Probability of
macrostate M as the number of distinct microstates corresponding to M

NM =
ΓM

h3NN !
(1.14)

The equilibrium macrostate is obtained by extremising the logarithm of the thermodynamic probability

IM = lnNM

= ln

(
ΓM

h3NN !

)
(1.15)

Let us compute this for a system of N weakly interacting particles with energy E and occupying volume
V . The accessible phase space volume is given by eqn.(1.9). Given that N >>> 1, the thermodynamic
probability simplifies to

NM =
1

N !(3N/2)!
V N

(
2mπE

h2

)3N/2

δE (1.16)

Taking the logarithm, we get

lnNM = N ln

[
V

(
2mπE

h2

)3/2
]
− lnN !− ln(3N/2)! + ln δE

We now use Sterling’s Formula
lnn! ' n lnn− n, n >> 1 (1.17)

Also, we can ignore the term ln δE compared with the other terms, which are all proportional to N . Finally,
we get

IM = N ln

[
V

N

(
4mπE

3h2N

)3/2
]

+
5

2
N (1.18)

This is an extensive quantity, in the sense that under transformations N → λN,E → λE, V → λV ,
IM → λIM .
Given such a system of particles, experience suggests that in equilibrium, the system will be distributed
homogeneously in both number and energy density. Can we see this as a consequence of the extremisation
of the function IM? Let us place a partition within the volume V , such that it is divided into two parts with
volumes V1 and V2 with N1 particles trapped within V1 and having energy E1 and N2 particles trapped
in V2, having energy E2. If the system was in equilibrium before we put this partition, the quantities
N1, N2, E1 and E2 should be such that the function IM is a maximum. To compute IM , we notice that
since the two sub-systems are disjointed, the toal number of microstates accessible to the entire system
will be a product

NM = NM1 ×NM2 (1.19)

where NM1 and NM2 are of the form (1.16) with corresponding values of N,V and E. Then

IM = logNM
= logNM1 + logNM2

= N1 ln

[
V1

N1

(
4mπE1

3h2N1

)3/2
]

+N2 ln

[
V2

N2

(
4mπE2

3h2N2

)3/2
]

+
5

2
N1 +

5

2
N2

= N1 ln

[
V1

N1

(
4mπE1

3h2N1

)3/2
]

+N2 ln

[
V2

N2

(
4mπE2

3h2N2

)3/2
]

+
5

2
N

4In principle, though, such mocrostates are distinct in classical physics, because even if particles are identical in intrinsic
properties, they are distinguished by their trajectories leading up to a given microstate. In the quantum description, since
there are no trajectories, the particles are, even in principle, indistinguishable. Here, we are introducing indistinguishability
in an operational sense, so that we don’t have to correct the estimation of microstates later when we use quantum mechanics.
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IM is to be extremised with respect to N1, N2, E1, E2, subject to the constraints N = N1 + N2 and
E = E1 +E2. Therefore, only N1 and E1 are independent variables and we need to extremise with respect
to them only. Then, while taking derivatives we need to use

∂N2

∂N1
=

∂(N −N1)

∂N1

= −1
∂E2

∂E1
=

∂(E − E1)

∂E1

= −1

Differentiating IM with respect to N1 gives

∂IM
∂N1

= ln

[
V1

N1

(
4mπE1

3h2N1

)3/2
]
− ln

[
V2

N2

(
4mπE2

3h2N2

)3/2
]

Extremisation with respect to N1 implies that this is zero, which gives the relation

V1

N1

(
E1

N1

)3/2

=
V2

N2

(
E2

N2

)3/2

(1.20)

Differnetiation with respect to E1 gives
N1

E1
=
N2

E2
(1.21)

Together, these equations give

N1

V1
=

N2

V2

E1

V1
=

E2

V2
(1.22)

Which tells us that the number density and the energy density in the two halves must be the same. This
argument can be recursively used within each such partition, so that eventually we see that in equilibrium,
the system of particles must be homogenoeusly distributed.



Chapter 2

Statistical Thermodynamics

2.1 Entropy

We now analyse the physical significance of the quantity IM . For a system of weakly interacting particles
in equilibrium, we constructed IM and observed that it is an extensive quantity. Further, if we partition
such a system of particles into two subsystems and compute IM , we saw that IM = IM1 + IM2 . Further, if
we free the constraints partitioning the system (we allowed N1, N2, E1 and E2 to vary), the extremisation
of IM with respect to the free parameters results in a configuration that is consistent with our intuitive
understanding of equilibrium (the particles are distributed homogenoeusly). All these properties remind
us of entropy in thermodynamics, which (a) is extensive (b) is maximised when a constrained is freed such
that a new equilibrium configuration is attained. Then, we conjecture the following: given a system in a
macrostate M , it has an entropy

S = kB lnNM (2.1)

This entropy, which we call Statistical Enropy, is defined for all macrostates, not just equilibrium ones.
This, then, is a more general definition of entropy compared with thermodynamic entropy, which is defined
only for equilibrium configurations. In relating S to IM , we have introduced a constant kB such that it has
the same dimensions as thermodynamic entropy. We will later identify kB as Boltzmann constant. Given
eqn.(2.1), we can easily demonstrate the additive nature of S for a system formed of n subsystems. Let there
be n distinct systems (with possibly different constituents) forming a single systems. Let these systems be
in macrostates M1,M2, ..Mn, such that there are NM1 microstates corresponding to the macrostate M1,
NM2 microstates corresponding to the macrostate M2, and so on. Then, given the macrostate M1.M2..Mn

of the composite system, the total number of microstates accessible to the entire system will be

NM = NM1 ×NM2 × ..×NMn (2.2)

From this, it follows that the statistical entropy of the system is

S = kB lnNM
= kB ln (NM1 ×NM2 × ..×NMn)

= S1 + S2 + ..+ Sn (2.3)

where Si = kB lnNMi is the statistical entropy of the ith system.

2.2 Temperature

Let us now consider two systems A and B separated by a partition which allows exchange of energy (but
not particles). We assume that the total energy of the systems is conserved, equal to E = EA + EB. The
systems, when brought in contact, will exchange energy, till an equilibrium is reached. This equilibrium
configuration will be one in which the statistical entropy of the composite system is a maximum, extremised

11
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with respect to the energy of either system (since the total energy is conserved, the energy of only one
system is an independent variable). This is, of course, the same as maximising the phase space volume.

Figure 2.1: Energy exchanged by two systems

Let the energies of the systems in equilibrium be ĒA and ĒB. For a configuration in which the energy
of system A is EA and that of B is EB, the total entropy of the system, as a function of, say EA, is

S(EA) = SA(EA) + SB(EB) (2.4)

where EB = E − EA is a function of EA. At equilibrium,

∂S

∂EA

∣∣∣∣
EA=ĒA

= 0

=⇒ ∂SA
∂EA

∣∣∣∣
EA=ĒA

+
∂SB
∂EA

∣∣∣∣
EA=ĒA

= 0

=⇒ ∂SA
∂EA

∣∣∣∣
EA=ĒA

− ∂SB
∂EB

∣∣∣∣
EB=ĒB

= 0

where we have used
∂SB
∂EA

= −∂SB
∂EA

since EA = E − EB. Then, the equilibrium values of energies satisfy the condition

∂SA
∂EA

∣∣∣∣
EA=ĒA

=
∂SB
∂EB

∣∣∣∣
EB=ĒB

(2.5)

This tells us that if two systems are allowed to exchange energy, they reach equilibrium when a certain
function, the partial derivartive of entropy with respect to energy, takes the same numerical value for both
systems. Clearly, this function must be related to the temperature of either system, since we know that
systems in thermodynamic equilibrium possess the same temperature. Then, the temperature of a system
must be related to the (partial) derivative of the entropy of the system with respect to energy. We employ
a definition which (as we will see) agrees with the absolute temperature (Kelvin temperature)

1

T
=

(
∂S

∂E

)
N,V

(2.6)

where the derivative with respect to energy is computed at fixed volume and number of particles (we
assumed above that the two systems could exchange energy only). Given any arbitrary system with a
certain number of particles, volume and energy, we can, in principle, compute the accessible phase space
volume (1.4)

ΓM (E, V,N) =

∫
E,V

dq1dq2..dq3Ndp1dp2..dp3N



2.2. TEMPERATURE 13

where for a general interacting system, the integrals are subject to constraints of volume and energy (1.5).
This allows us to compute the equilibrium statistical entropy as a function of energy, volume and number
of particles

S(E,N, V ) = kB ln

[
ΓM (E, V,N)

h3NN !

]
(2.7)

Differentiating this with respect to energy gives a relation between energy, volume and temperature of the
system.
As an example, let us take a system of N weakly interacting particles, for which the entropy is computed
to be (see eqn.(1.18))

S = NkB ln

[
V

N

(
4mπE

3h2N

)3/2
]

+
5

2
NkB (2.8)

Differentiating partially with respect to energy E gives(
∂S

∂E

)
N,V

=
3

2

NkB
E

From eqn.(2.6), it follows that

E =
3

2
NkBT (2.9)

which agrees with the result obtained from Kinetic Theory (with kB in eqn.(2.1) identified as Boltzmann
constant), and justifies eqn.(2.6) for thermodynamic temperature.
Let us go back to the two systems A and B separated by a partition. We have seen that if the systems are
allowed to exchange energy, the equilibrium values of energies of the two systems are such that the two
systems have the same temperature. Now, let us disturb this equilibrium slightly, such that EA and EB
are not equal to their equilibrium values ĒA and ĒB, but infinitesimally away from them. We also assume
that these systems are initially insulated from each other (cannot exchange energy). Then, each system is
in itself in equilibrium, with temperatures

1

TA
=

(
∂SA
∂EA

)
NA,VA

1

TB
=

(
∂SB
∂EB

)
NB ,VB

(2.10)

Now, we bring them in contact and let them exchange energy. Then, energy of A will change by ∆EA and
that of B will change by ∆EB, such that ∆EA + ∆EB = 0 (total energy is conserved). Energy will flow
from one system to the other, this flow being identified as the heat flowing from one system to the other.
Since this flow is directional, we ask: how is the direction of flow of ‘heat’ related to the temperatures of
the two systems? As the systems exchange energy to reach a new equilibrium, the total entropy of the
two systems must increase, since in the new equilibrium, it is a maximum, and therefore greater than the
initial entropy when the systems were insulated. The change in the total entropy of the two systems when
heat flows is

∆S = ∆SA + ∆SB

=
∂SA
∂EA

∆EA +
∂SB
∂EB

∆EB

=

(
1

TA
− 1

TB

)
∆EA (2.11)

where we have used ∆EA + ∆EB = 0. Since ∆S > 0, if TA > TB, then ∆EA < 0. That is, energy (heat)
will flow from system A to system B. This just illustrates that heat flows from a hotter to a cooler object.
Here, we have seen it as a consequence of increase of entropy due to a spontaneous process of an isolated
system, in which the macrostate changes such that more available phase space volume is covered, which is
equivalent to saying that the entropy increases.
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2.3 Entropy Extremization

The relation between temperature and entropy deduced above is an example of the principle of extremiza-
tion of entropy (or, equivalently, volume of available phase space). In general, consider an isolated system
in equilibrium, subject to internal constraints which take the form of fixed parameters λ1, λ2, .., λn. In this
configurarion, the entropy of the system is a function of parameters λi. Say, we set one or more of these
constraints free, such that some parameters are now free to change. The new equilibrium configuration will
be one in which the free parameters take such values, that the available phase space volume is a maximum.
This is the same as saying that the equilibrium values of the parameters are those which extremize the
entropy of the system with respect to those parameters. For instance, in the previous section, internal
constraints separated the system into subsystems A and B, with parameters being the number of parti-
cles, energy and volumes of the subsystems. When the energy of the subsystems was allowed to vary, the
equilibrium configuration was the one in which the entropy was extremized with respect to the energy of
any one subsystem, and this led to the condition that the tempertures of the subsystems must be equal in
the equilibrium configuration.
As another illustration of entropy extremization, let us deduce an expression for the pressure exerted by a
system of interacting particles in equilibrium on a container containing the particles. Consider the system
confined to a cylindrical chamber with a moving frictionless piston on which an object of mass m is placed.
Initially, the piston is locked in place, and the particles have energy Ei and occupy volume Vi. If the lock
is removed, the piston will move till a new equilibrium configuration is attained. We ask: what is the new
position of the piston? Intuitively, we know that the equilibrium position will be such that the pressure
exerted by the system on the piston equals the weight of the object placed on it (assuming the mass of the
piston is very small compared with that of the object placed on it). However, let us view this from the
point of view of entropy extremization

Figure 2.2: Pressure exerted by a system of particles

For a given position of the piston, the energy of the system is E = Ei−mgy where y is the displacement
of the piston relative to its initial, locked position. The volume accessible to the system is V = Vi + Ay
where A is the area of the piston. Let the entropy of the system of particles when its energy is E and
volume V be S(E, V ). This expression will depend on the details of interactions betwen the particles. For
a given position of the piston, this can be thought of as a function of a single parameter: the position of
the piston, y

S(E, V ) = S(Ei −mgy, Vi +Ay) (2.12)

Initially, when the piston is locked, this parameter is fixed (y = 0). However, as this parameter is allowed
to vary, it will reach an equilibrium value such that the entropy is an extremum with respect to y. The
condition for equilibrium is then

∂S

∂y
= 0

=⇒
(
∂S

∂E

)
V

∂E

∂y
+

(
∂S

∂V

)
E

∂V

∂y
= 0
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Since E = Ei −mgy, V = Vi +Ay, ∂E/∂y = −mg and ∂V/∂y = A. Then, the equilibrium condition is

A

(
∂S

∂V

)
E

= mg

(
∂S

∂E

)
V

=
mg

T

where T is the temperature of the system in the equilibrium configuration. Then, we get

mg

A
= T

(
∂S

∂V

)
E

However, in equilibrium, mg/A equals the pressure exerted by the system on the piston. This gives us an
expression for the pressure of the system as a function of its energy and volume (equation of state)

P = T

(
∂S

∂V

)
E,N

(2.13)

where we have added N (number of particles) to the subscript, previously suppressed. Then, a calculation
of the statistical entropy allows us to determine the equation of state of the system of particles. Let
us apply (2.13) to a system of weakly interacting particles, for which the entropy is given by eqn.(2.8).
Differentiating with respect to volume gives(

∂S

∂V

)
E,N

=
NkB
V

(2.14)

Then, the pressure of the system is

P = T

(
∂S

∂V

)
E,N

= T
NkB
V

(2.15)

which gives the equation of state
PV = NkBT (2.16)

2.4 Principle of equal a-priori probabilities

Given that a macroscopic system is in equilibrium does not imply that the system is ‘static’. The microstate
of the system keeps evolving with time, consistent with dynamical laws. Consequently, its macrostate also
keeps evolving. However, we have seen that with ‘overwhelming probability’ (practically unity), the system
will be found in a state in which the accessible phase space volume is a maximum. Still, the macrostate,
in principle, will fluctuate about this equilibrium state. What are the odds that it will be found in a
macrostate M? From what has been discussed before, it seems ‘reasonable’ that the probability of a
system existing in macrostate M should be proportional to the phase space volume associated with that
macrostate. In other words, the ratio of the probability that the system is in macrostates M and M ′ is

P (M ′)

P (M)
=

ΓM ′

ΓM

=
NM ′
NM

(2.17)

whereNM is the number of microstates corresponding to macrostate M , given by eqn.(3.3). Saying that the
probability of a macrostate is proportional to the numner of microstates corresponding to the macrostates
is equivalent to assuming that all microstates are equally probable. This is the so-called Principle of equal a
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priori probabilities. It is not possible to give a rigorous justification of this hypothesis based on dynamical
equations. All that can be said is that it is ‘reasonable’ and experiments support it. How would one
verify such a principle experimentally? One way to do it is to predict the amount of fluctuation in a
system, about the equilibrium macrostate. For instance, a system of particles in gaseous state enclosed in
a volume is expected to be homogeneously distributed throughout the volume. However, there are expected
to be density fluctuations, however small. If these fluctuations are measured, they can be tested aginst
predictions based on the principle of equal a priori proabability. Assuming this principle, let us caculate
the probability of such fluctuations. To keep the discussion general, let us assume there is a parameter λ
which, left free, has attained equilibrium value λ̄. This is the value for which the entropy of the system,
as a function of λ, is an extremum. That is, S′(λ̄) = 0, where S′(λ) = ∂S/∂λ. Given eqn.(2.17) and (2.1),
it follows that the probability of the parameter taking value λ is given by

P (λ)

P (λ̄)
=
NM(λ)

NM(λ̄)

=
eS(λ)/kB

eS(λ̄)/kB

= e(S(λ)−S(λ̄))/kB (2.18)

Expanding S(λ) about λ̄ and retaining terms upto ∆λ2, we get

P (λ) = P (λ̄) e(1/2kB)S′′(λ̄)∆λ2

= P (λ̄) e−(1/2kB)|S′′(λ̄)|∆λ2 (2.19)

which shows a Gaussian form for fluctuations. We will see later that ∆λ/λ̄ ∼ 1/
√
N , where N is the

number of particles of the system.
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Statistical Distribution of an Isolated
System

3.1 Microcanonical Distribution

We have seen that the microstate of an isolated system of particles keeps fluctuating (driven by dynamical
equations), and so does the corresponding macrostate. To determine equilibrium properties of the system,
the principle of equal a-priori probabilities in invoked, which essentially states that given constraints on
the system, all microstates of the system consistent with the constraints are equally probable. Then, the
‘reason’ for observing special macrostates and not others (such as a homogenoeus distribution of particles of
a gas) is that such macrostates are associated with possible microstates whose number is ‘overwhelmingly
large’ compared with the number of microstates for other macrostates. This is equivalent to saying that in
equilibrium, macrostates manifest with probabilities proportional to the corresponding phase space volume
associated with them. Let us mathematically state this probability distribution more precisely. Say, the
(conserved) energy of the system of particles is known to lie in the range E0 < E < E0 + δE. Then, the
probability that the system is in a microstate r is given by

Pr =

{
1/N Er ∈ [E0, E0 + δE]

0 Er /∈ [E0, E0 + δE]
(3.1)

where N is the total number of microstates consistent with the fact that the energy of the system lies in
the range E0 < E < E0 + δE, and any other external constraints such as the volume of the system, etc.
This probability distribution is called the Microcanonical Distribution. At this stage, we have assumed that
even though the microstate of the system changes with time due to the dynamics so that it explores the
phase space, the representative point of the system is always constrained to lie on a ‘surface’ of constant
energy in the phase space, since the energy of the system is conserved. When we say this, we assume that
energy is the only conserved quantity. This may not be true. In addition to energy, there could be, in
principle, other conserved quantities. For instance, consider a system of particles confined to a spherical
volume, interacting with the wall through elastic collisions. Spherical symmetry implies that in addition to
energy, the angular momentum of the system is also conserved. This leads to additional constraints on the
position and momentum components of the system (three, one for each component of angular momentum).
Then, the representative point is constrained to lie on a surface of a smaller dimension than if the volume
was not spherical. This will now be a 6N − 4 dimensional surface, corresponding to fixed value of energy
and angular momentum components. For now, we will assume that energy is the only conserved quanti

3.1.1 Maxwell velocity distribution

As an application, let us deduce the Maxwell velocity distribution for a system of weakly interacting
particles, confined to a volume V and with energy in range [E,E + δE]. Let us ask the question: what is
the probability that a particle, picked at random, has momentum that lies between ~p and ~p + d~p? Given

17
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the distribution (3.1), the probability is

P (~p)d3~p =
Number of microstates corresponding to this one particle having momentum in this range

Total number of mocrostates consistent with energy an volume constraints
(3.2)

Now, the total number of microstates is given by eqn.(3.3)

N (E, V,N) =
Γ(E, V,N)

h3NN !
(3.3)

where we have explicitly specified the constaints E, V,N . Now, say we pick particle 1 and calculate the
probability that it has momentum in range ~p and ~p+ d~p. The volume of the phase space corresponding to
this particle having this momentum is

Γ~p = d3~p

∫
d3~r1d

3~r2..d
3~rN d3~p2d

3~p3..d
3~pN

= V d3~p

∫
d3~r2d

3~r3..d
3~rN d3~p2d

3~p3..d
3~pN (3.4)

The number of microstates, taking into account the division of the phase space into cells and the idential
nature of particles 2, 3.., N , is

N ′ =
Γ~p

h3N (N − 1)!

However, there is no ‘particle 1’. Therefore, we need to divide this number by the total number of ways
we could have picked this particle (there are N ways). Then, the correct number of microstates is

N~p =
Γ~p

h3NN !
(3.5)

Then, the probability (3.2) reduces to

P (~p)d3~p =
Γ~p

Γ(E, V,N)
(3.6)

Now, the phase space integral appearing in the expression for Γ~p is subject to the constraint that the
N − 1 particles 2, 3, .., N have available volume V and available energy E − ~p2/2m (since particle 1 has
momentum ~p and energy ~p2/2m). Therefore

Γ~p = V d3~p Γ
(
E − ~p2/2m,V,N − 1

)
(3.7)

Therefore

P (~p) = V ×
Γ
(
E − ~p2/2m,V,N − 1

)
Γ(E, V,N)

(3.8)

The expression for Γ(E, V,N) is given in eqn.(1.9)

Γ(E, V,N) =
π3N/2

Γ(3N/2)
(2m)(3N−1)/2V NE3(N−1)/2δE (3.9)

Using this, the expression for P (~p) reduces to

P (~p) =
1

(2mπE)3/2
× (3N/2− 1)!

(3N/2− 5/2)!
×
(

1− ~p2

2mE

)3N/2−3

(3.10)

Here, we are working with a system with a very large number of particles, with N >>> 1. Then, the
exponent 3N/2−3 can be readily approximated to 3N/2. We will need to be more careful in approximating
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the factorials, since they are rapidly increasing functions of N . As before, in such a situation, it is best to
work with logarithms. Let αN = (3N/2− 1)!/(3N/2− 5/2)!. Then, using Sterling’s approximation

lnαN = ln(3N/2− 1)!− ln(3N/2− 5/2)!

' (3N/2− 1) ln(3N/2− 1)− (3N/2− 1)− (3N/2− 5/2) ln(3N/2− 5/2) + (3N/2− 5/2)

' (3N/2− 1) ln(3N/2− 1)− (3N/2− 5/2) ln(3N/2− 5/2)− 3

2
' (3N/2− 1) ln(3N/2)− (3N/2− 5/2) ln(3N/2)

' 3

2
ln(3N/2)

where we have ignored certain numerical terms compared with N . Then,

αN '
(

3N

2

)3/2

(3.11)

Finally, we get

P (~p) =

(
3N

4mπE

)3/2(
1− ~p2

2mE

)3N/2

(3.12)

In equilibrium, the total energy of the system is related to its temperature according to (2.9)

E =
3

2
NkBT

Substituting this, we get

P (~p) =

(
1

2mπkBT

)3/2(
1− ~p2

2mkBT × (3N/2)

)3N/2

(3.13)

Since 3N/2 >>> 1, (
1− ~p2

2mkBT × (3N/2)

)3N/2

' e−~p2/2mkBT (3.14)

Then, we finally get the Maxwell distribution (the velocity distribution is obtained by setting ~p = m~v)

P (~p)d3~p =

(
1

2mπkBT

)3/2

e−~p
2/2mkBTd3~p (3.15)

3.1.2 A first look at the Ising Model

We now consider another system: a system of N ‘spins’ located on a fixed lattice. Each spin represents the
spin angular momentum of an atom located at the lattice site. Since the magnetic moment of an atom is
proportional to its spin angular momentum, each atom possesses a magnetic moment, and as a result, the
system of spins can possess a net magnetization. The neighboring spins interact with each other through
a magnetic interaction (since this interacting strength falls off rapidly with distance, we ignore interaction
between spins further away). We assume that each atom has a net (quantum mechanical) spin half, such
that any one component of the spin angular momentum can take values ±~/2. In principle, such a system
should be treated quantum mechanically. However, we strip it down to a semi-classical model, known as
the Ising Model. In this model, the spin orientation is restricted to one direction only, along which it can
that values S = ±~/2. The interaction between spins located at neighboring lattice sites i and j results in
an interaction energy proportional to SiSj . This interaction term can be written as

Eint = −Jσiσj (3.16)
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where σi is spin of the ith site measured in units of ~/2, and therefore takes values ±1. J > 0 is a constant
of proportionality, determining the strength of interaction. When the neighboring spins are parallel (both
1 or −1), it lowers the energy of the system. This accounts for the negative sign. Now, say we introduce
an external magnetic field. Each spin will now interact with this magnetic field, the interaction energy of
the ith spin being of the form Ei = −hσi, where h is proportional to the magnetic field (we will identify h
as the magnetic field measured in suitable units). The, the total energy of the system is given by

E = −J
∑
<i,j>

σiσj − h
∑
i

σi (3.17)

A microstate of this system would be a precise specification of the spin of each lattice site (+1or − 1). A
macrostate would be a specification of the total magnetisation of the system

M =
1

N

∑
i

σi (3.18)

Given M , there will be many spin configurations, resulting in the same value of M . The dynamical
equations determining how the microstates evolve are not specified. We just assume that there exist such
(semiclassical) equations which will lead to the evolution of spin configurations with time, and that in
equilibrium, all microstates are equiprobable.
If the external magnetic field is strong enough (h >> J), we can approximate the expression for energy as

E ' −h
∑
i

σi (3.19)

This energy is conserved. The ‘motion’ of the phase point of the system is subject to constrainsts that
the energy of the system is conserved and the external magnetic field has a certain value. Consistent with
these constraints, let us calculate the number of microstates. Given the energy and number of spins, the
total number of ‘up’ spins n+ and number of ‘down’ spins n− are fixed by equations

n+ + n− = N

n+ − n− = −E/h (3.20)

Solving these, we get

n+ =
1

2

(
N − E

h

)
n− =

1

2

(
N +

E

h

)
(3.21)

The magnetization of the system (in suitable units) is

M =
n+ − n−

N

= − E

Nh
(3.22)

such that

E = −NhM (3.23)

The macrostate of the system is a specification of the number of spins and the magnetization. This is
equivalent to a specification of n+ and n−. This does not determine which spin is up and which spin
is down, just the total number of up spins and the number of down spins. Each spin’s spin state keeps
fluctuating, such that the microsate of the system keeps changing, for the given fixed macrostate. The
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total number of microstates is just the number of ways of having n+ spins up and n− spins down, with the
total number fixed. This is given by

N (E, h,N) =
N !

n+!n−!
(3.24)

Note that we do not divide by N ! as we did for the case of identical particles in eqn.(3.3). This is
because since the spins are localised at distinct points in space, interchanging spins does lead to a different
configuration. The entropy of the system is given by (2.1)

S = kB lnN

= kB ln

(
N !

n+!n−!

)
= kB (lnN !− lnn+!− lnn−!)

' kB (N lnN −N − n+ lnn+ + n+ − n− lnn− + n−)

= kB (N lnN − n+ lnn+ − n− lnn−)

= −kB
[
n+ ln

(n+

N

)
+ n− ln

(n−
N

)]
Substituting for n+ and n−, we get

S = −NkB
{

1

2

(
1− E

Nh

)
ln

[
1

2

(
1− E

Nh

)]
+

1

2

(
1 +

E

Nh

)
ln

[
1

2

(
1 +

E

Nh

)]}
(3.25)

The temperature of the system is given by

1

T
=

(
∂S

∂E

)
h,N

= −kB
2h

ln

(
1 + E/Nh

1− E/Nh

)
(3.26)

Solving for E, we get

E = −Nh tanh

(
h

kBT

)
(3.27)

The magnetization of the system as a function of temperature is obtained from (3.22)

M = tanh

(
h

kBT

)
(3.28)

Following is a plot of magnetization vs temperature

Figure 3.1: Magnetization vs Temperature: Ising Model with strong magnetic field

In presence of an external magnetic field, there is a natural temperature scale T0 = h/kB. For T >> T0

and T << T0, the behaviour of the magnetization is as follows

M '
{ h

kBT
T >> T0

1 T << T0
(3.29)
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At very low temperatures, almost all spins are aligned along the direction of the magnetic field (M ' 1)
and at very high temperature, the magnetization falls inversely with temperature. The Ising model, in the
approximation that the inter-spin interaction can be ignored, is a simple toy model for paramagnetism.
However, the behaviour at low temperatures as predicted by (3.29) is non-trivially modified by inter-spin
interactions. With interactions included, the model predicts a spontaneous magnetization even in absence
of an external magnetic field. It therefore is a simple model for ferromagnetism.

3.1.3 Negative Temperatures

An isolated system of N spins allows for an interesting possibility: the potential for the system to have
negative temperatures. Even though negative temperatures might seem counter-intuitive, given the relation
(2.6) between temperature and entropy, if a system is in a state such that an increase in energy of the
system results in a decrease in its entropy, the temperature of the system in that state will be negative.
Intuitively, one expects the entropy to be an increaing function of energy, as in case of a system of weakly
interacting particles (eqn.(2.8). This is because if a system has greater energy, there are many more ways
of distributing this energy among the different constituents. However, this argument fails if the system’s
energy is bounded from above. That is, the energy of the system cannot exceed a certain value. In such cases,
as one approaches close to the highest attainable energy, the number of microstates (corresponding to a
given value of energy) decreases with increasing energy. Therefore, the entropy of the system (proportional
to the logarithm of the number of microstates) is a decreasing function of energy. Therefore, it follows from
(2.6) that the temperature of the system is negative. In presence of an external magnetic field (ignoring
inter-spin interaction), a system of N spins described by the Ising model has this property. Clearly, there is
exactly one microstate corresponding to the highest energy: the state in which all the spins are antiparallel
to the external magnetic field. The next macrostate (lower in energy) is one in which exactly one spin is
parallel to the magnetic field. This macrostates corresponds to N microstates (any one of N spins parallel
to the magnetic field). It is easy to see that as we approach the highest energy configuration from below,
the number of microstates shrinks. Therefore, we expect this system to exhibit negative temperatures in
this region of energy. To see this explicitly, we go back to eqn.(3.26)

1

T
= −kB

2h
ln

(
1 + E/Nh

1− E/Nh

)
(3.30)

This equation can be used to plot the temperature of the system as a function of energy

Figure 3.2: Temperture vs Energy for a system of Ising spins (strong magnetic field)

Clearly, the system exhibits negative temperature for the range 0 < E < Nh. It is instructive to plot
the entropy of the system (eqn.(3.25) as a function of energy
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Figure 3.3: Entropy vs Energy for a system of Ising spins (strong magnetic field)

The macrostate with the least energy E = −Nh and magnetization M = −1 has exactly one corre-
sponging microstate: all spins parallel to the field h. The entropy of this system is clearly zero. We can
increase the energy (and entropy, upto a point) by flipping one spin at a time anti-parallel to the magnetic
field. For instance, if we flip one spin antiparallel, there are N possible microstates (any one of N possible
spins antiparallel), so the entropy increases from zero the kB lnN . The maximum entropy configuration
is one in which the total energy (nd magnetization) of the system is zero. This corresponds to half of the
spins parallel and half anti-parallel to the external field. The entropy of the system for this configuration
is NkB ln 2. If we flip more spins anti-parallel, we start decreasing the entropy of the system, till it reaches
zero when all the spins are anti-parallel. A look at figure 3.2 shows that the temperature of the system
diverges as we approach E = 0. However, the divergence is in different directions, depending on how E = 0
is approached. If we approach from the positive temperature side, the temperature diverges to positive
infinity. Approaching from the negative temperature region, it diverges to negative infinity. What does
all this mean? If we interpret temperature as being related to the rate of change of entropy with energy,
this behaviour is understandable. However, intuitively, we understand temperature in the context of a
thermometric measurement, which involves the system coming to equilibrium with a measuring device.
What will a thermometer measure, if it is brought ‘in contact’ with this system? The answer depends on
what the properties of the thermometric substance. Any traditional thermometric substance is a system
without an upper energy bound. Therefore, it is incapable of attaining negative temperatures. What
happens then if such a thermometer is brought in contact with a system at negative temperature? Will
heat flow from the thermometer to the system or vice-versa? Let us consider two systems A and B, with A
being a conventional system that does not have an upper energy bound and B a system which can attain
negative temperatures. For definiteness, let us assume that B is our spin system. Let us assume that
initially TB < 0 (when B is not in contact with system A). Now, the two systems are allowed to interact
(brought in ‘thermal contact’). In which direction will heat flow?

Figure 3.4: Heat flow from negative to positive temperature
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Figure 3.4 illustrates the direction of flow of heat and the consequent change in entropy of both systems.
The key is that once the systems are allowed to exchange energy, the total entropy of the two systems
will increase. The negative temperature system can increase its entropy by losing energy ∆Q and at the
same time, the positive temperature system can increase its entropy by gaining this energy. Then, a flow
of heat from the negative to the positive temperature system will increase the entropy of both systems,
resulting in an overall increase in entropy. On the other hand, a flow of heat from the positive to the
negative temperature system will decrease the entropy of both systems, resulting in an overall decrease
in entropy, which is not possible. Therefore, heat will flow from the negative to the positive temperature
system. Negative temperatures are hotter than positive temperatures. When will this heat exchange stop?
This exchange will continue till system B is in the negative temperature region. As soon as it enters the
positive temperature region (EB < 0), if it loses energy ∆Q to system A, while the entropy of A will
incrase, the entropy of B will decrease. Since the flow of energy has to be such that the total entropy
increases, there will be a tension between the increase of entropy of A and the decrease of entropy of B. At
this stage, the systems will behave just like two ‘ordinary’ positive temperature systems trying to attain
thermal equilibrium - the flow of heat from B to A will stop when their tempearatures equalize (both
attaining the same positive temperature)

Figure 3.5: Heat flow from positive to positive temperature

Negative temperature systems have very interesting and counter-intuitive properties. Why is it we
don’t encounter them everyday? For instance, a poramagnetic solid in presence of an external magnetic
field should be able to behave like a negative temperature system, if we can excite the atomic spins to high
eneough energy. The problem is, that such a system does not just have spin ‘degrees of freedom’. Each atom
has its own translational degrees of freedom as well, and can oscillate about its equilibrium position. These
degrees of freedom correspond to the 6N dimensional phase space of position and momentum components
of the system of atoms. Further, there is upper bound to the energy this system of atoms can possess by
virtue of their translational motion. Then, if we somehow excite the spins to an energy which corresponds
to negative temperatures, then the spin degrees of freedom will be at negative temperature, but the
translational degrees at positive temperature. Two different dynamical aspects of the same system are at
different temperatures! If there is any ‘coupling’ between these degrees of freedom, the spin degrees will
lose energy to the translational degrees, incresing the entropy of both aspects of the system, till eventually
both reach the same positive temperature. Therefore, negative temperature states are inherently unstable,
though they can be, under controlled conditions, created in the lab.



Chapter 4

Statistical Distribution of Subsystems

4.1 Statistics of subsystems

In nature, no system is truly isolated. Systems in equilibrium are in fact subsystems of much larger
systems, in equilibrium with the other parts of the larger system. For example, a block of copper in a
room can be modelled as a system of copper atoms in the solid phase, in equilibrium with the gases in
the surrounding air (ignoring the existence of a support on which the block rests). If we could in principle
somehow isolate the room from eveything else, then the system consisting of the air and the copper block
would be isolated, with total energy conserved. However, the energy of the block is not conserved, since it
exchanges energy continuously with the air molecules due to collisions. Together, though, the air molecules
and the copper are in equilibrium, which means they have together attained a macrostate consistent with
maximum possible phase space volume (the phase space constructed from coordinates and momentum
components of the copper and gas atoms).
Given a subsystem in equilibrium with an environment, we wish to deduce the statistical distribution for
this subsystem. For a (hypothetically) isolated system, the probability that the system is in some microstate
is given by the microcanonical (3.1), which essentially gives the same probability to every microstate of the
system. To deduce this distibution, we will assume the microcanonical distribution for the entire system,
and further assume that the number of degrees of freedom of the subsystem, while very large, are much
fewer than those of the entire system (and therefore the rest of the system as well), though . In addition,
we will also make a very important assumption: the subsystem interacts very ‘weakly’ with the rest of
the system. This is justified if the interaction of the constituents of the subsystem with the constituents
of the environment are short-ranged. For instance, in the example of the block of copper interacting with
gas molecules, any one molecule interacts with a copper atom only when it is within a few angstroms of
the atom. The following arguments will not be valid if the interactions are long-range, as for example in
the case of gravitationally interacting systems (if the system is a star and the subsystem is a part of the
star, the particles of the subsystem interact with the particles of the rest of the star through a long-range
gravitational interaction). Assuming this to be the case, since the interaction of the subsystem with the
environment occurs only at the boundary (being short-range) separating the two, the interaction energy,
compared with the energy of the subsystem and the environment, will by smaller by a factor of the ratio
of surface area to violume of the subsystem. For a macroscopic system, this will be vanishingly small. As
a result, the total energy of the system is, to an excellent approximation, additive

E = Esub + Eenv (4.1)

Esub and Eenv keep fluctuating with time because of energy exchange between the subsystem and the
environment. In addition to energy, there could be other conserved quantities. For instance, if the entire
system possesses rotational symmetry, the total angular momentum of the system is conserved. Angular
momentum of the system is also additive. Therefore, for any one component of angular momentum, we
will have an equation of the form (4.1)

J = Jsub + Jenv (4.2)

25
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Similarly, translational invariance would result in the momentum of the system being conserved, with
similar equation for each momentum component.
When we make measurements on macroscopic subsystems in equilibrium with their environment, we observe
that properties such as energy, volume, etc. are sharply defined. That is, they appear to be constant,
even though the subsystem can exchange energy, share volume, etc. with the environment. The key
to this behaviour is that these quantities are extensive, that is, scale with the number of particles of the
subsystem. The reason behind the constancy of such properties is the idea of statistical independence. Two
such subsystems interacting with each other (with short range interactions) are statistically independent.
That is, the probability that one subsystem is in microstate r and another in microstate r′ satisfies

Prr′ = Pr × P ′r (4.3)

This is true only if the interaction beween the two subsystems is weak, which is expected to be true if the
interaction is short-range. Then, there is expected to be no correlation between one subsytem being in a
certain microstate r and another being in microstate r′. Given this staistical independence, let us show
that if the subsystem has a large enough number of particles, fluctuations in extensive (additive) quantities
such as energy, volume will be ‘very small’. Let us visualise the subsystem in question as consisting of
N furthur subsystems i = 1, 2, ..., N , where each such subsystem still consists of a very large number of
particles, such that it is statistically independent from the others. Let A be an extensive quantity of the
subsystem (such as energy, volume, angular momentum, etc.). Then, if Ai is the value of this quantity for
the ith subsystem, then it follows that

A =
N∑
i=1

Ai (4.4)

The quantity A (and all the Ais) will not be constant, but will fluctuate because of interaction with the
environment. Let the average of A be Ā and that of Ai be Āi. Then,

Ā =
N∑
i=1

Āi (4.5)

Given the probability distribution of microstates of a subsystem (to be deduced), the standard deviation
corresponding to this probability distribution will be a measure of the fluctuation ∆A in A (and similarly,
Ais)

∆A =
√

∆A2 (4.6)

where

∆A2 =
(
A− Ā

)2
= A2 −

(
Ā
)2

(4.7)

Now,

A2 =

(
N∑
i=1

Ai

)2

=

N∑
i,j=1

AiAj (4.8)

Therefore

A2 =
N∑

i,j=1

AiAj

=
∑
i 6=j

AiAj +

N∑
i=1

A2
i (4.9)
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Since the subsystems are statistically independent, therefore

AiAj = Ai ×Aj (4.10)

Therefore

A2 =
∑
i 6=j

Ai ×Aj +
N∑
i=1

A2
i (4.11)

Further, it follows from (4.5) that

(
A
)2

=

(
N∑
i=1

Āi

)2

=

N∑
i,j=1

Ai ×Aj

=
∑
i 6=j

Ai ×Aj +
N∑
i=1

(
Ai
)2

(4.12)

Then, it follows (from (4.11) and (4.12))

∆A2 = A2 −
(
Ā
)2

=
N∑
i=1

A2
i −

N∑
i=1

(
Ai
)2

=
N∑
i=1

[
A2
i −

(
Ai
)2]

=
N∑
i=1

∆A2
i (4.13)

where ∆Ai =
√

∆A2
i is the fluctuation in Ai. This is the key result. Given a subsystem furthur comprising

of N subsystems (each macroscopic), the fluctuation squared of any extensive physical quantity is additive
because of statistical independence

∆A2 =
N∑
i=1

∆A2
i (4.14)

Given this, it follows that if we scale the entire subsystem by λ (thereby scaling each sub-part by the same
factor), the mean of any extensive quantity scales by λ (from (4.5), and the fluctuation squared also scales
by λ (from (4.14). Therefore, the fluctuation scales as the square root of λ

A −→ λ A

∆A −→
√
λ ∆A (4.15)

Therefore, the relative fluctuation scales as 1/
√
λ

∆A

A
−→ 1√

λ

∆A

A
(4.16)

From this it immediately follows that for a subsystem consisting of n particles,

∆A

A
∝ 1√

n
(4.17)

which, for a macroscopic system, is very small. This is why in equilibrium, we observe that extensive
properties of subsystems are very sharply defined.
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4.2 The probability distribution

Consider a subsystem A interacting with an environment B. We assume that the number of degrees of
freedom of the environment are much larger than those of the subsystem (practically infinite). Let there
be n additive, conserved quantities Q1, Q2, ..., Qn for the entire isolated system, of which the subsystem
is a small part. Typically, these will be energy, volume and number of particles of the system. However,
in case of rotationally and/or translationally invariant systems, these could be angular momentum and/or
momentum. The subsystem could ‘exchgange’ one or more of these quantities with the environment. For
instance, if there is a boundary separating the subsystem from the environment which allows only energy
exchange, then energy will be the quantitiy that is exchanged. More generally, the subsystem could also
exchange particles with the environment, or might share the total volume with the environment. For
instance, it could be a system of particles trapped within a membrane (this membrane embedded in an
environment of other particles) whose volume could be variable. Then, the number of particles and volume
would be such quantities, apart from energy. The key is that (a) the quantities should be conserved for
the entire system and (b) they should be additive and (c) should be exchanged between the subsystem
and the environment. Let there be m such quantities that satisfy all three assumptions. Let us ask
the following question: what is the probability that the subsystem is in a microstate r, in which these
quantities have values Qr1, Q

r
2, .., Q

r
m? Let the total (conserved) values of these quantities, for the entire

system, be Q0
1, Q

0
2, .., Q

0
m. Then, given the subsystem is in microstate r, these additive quantities will

take values Q0
1 − Qr1, Q0

2 − Qr2, .., Q0
m − Qrm for the environment. Given these values, there will be many

different microstates of the environment, all corresponding to these quantities taking these fixed values.
Let the number of such microstates of the environment be N env(Q0

1 − Qr1, Q0
2 − Qr2, .., Q0

m − Qrm). Since
all microstates of the entire system are equally probable, the probability that the subsystem is in the
particular microstate r is given by

Pr =
N env(Q0

1 −Qr1, Q0
2 −Qr2, .., Q0

m −Qrm)

N (Q0
1, Q

0
2, .., Q

0
m)

(4.18)

where N (Q0
1, Q

0
2, .., Q

0
m) is the total number of microstates of the entire system corresponding to conserved

values Q0
1, Q

0
2, .., Q

0
m. Let the entropy function for the environment be Senv(Q1, Q2, .., Qm), which will be a

function of the values Q1, Q2, ...Qm of the additive quantities for the environment. This is related to N env

by (2.1)
Senv(Q1, Q2, .., Qm) = kB lnN env(Q1, Q2, .., Qm) (4.19)

which implies
N env(Q1, Q2, .., Qm) = e[Senv(Q1,..Qm)/kB ] (4.20)

Therefore

Pr =
1

N (Q0
1, .., Q

0
m)
e[S

env(Q0
1−Qr1,..Q0

m−Qrm)/kB] (4.21)

The term Senv in the exponent can be expanded in a Taylor series about the point Qr1 = Qr2 = .. = Qrm = 0.
Retaining terms upto order Qri , we get

Senv(Q0
1 −Qr1, ..Q0

m −Qrm) ' Senv(Q0
1, Q

0
2, ..Q

0
m)−

(
∂Senv

∂Q0
1

)
Qr1 −

(
∂Senv

∂Q0
2

)
Qr2...−

(
∂Senv

∂Q0
m

)
Qrm

= Senv(Q0
1, Q

0
2, ..Q

0
m)− α1Q

r
1 − α2Q

r
2..− αmQrm (4.22)

where α1, α2, .., αm are constants depending on the properties of the environment. Finally, we get the
general probability distribution for the subsystem

Pr = c e−(α1Qr1+α2Qr2..+αmQ
r
m)/kB (4.23)

where

c =
1

N (Q0
1, .., Q

0
m)
eS

env(Q0
1,Q

0
2,..Q

0
m)/kB (4.24)
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is a constant, in the sense that it is independent of the properties of the subsystem. In the Taylor expansion
(4.22), we ignored the second and higher order terms. We will see that these terms are suppressed by inverse
powers of the total number of particles of the subsystem. Therefore, for a macroscopic subsystem, these
terms can usually be ignored.

4.3 The canonical distribution

The most common situation is one in which a subsystem, in equilibrium with an environment, exchanges
energy with it. In this situation, the probability distribution (4.23) reduces to

Pr = ce−βEr (4.25)

where Er is the energy of the subsystem in microstate r. The constant β is easily seen to be related to the
temperature of the environment (and also of the subsystem in equilibrium with it)

β =
1

kB

(
∂Senv

∂E0

)
=

1

kBT
(4.26)

The constant of proportionality in (4.25) is set by the constraint
∑

r Pr = 1, which gives

c =
1∑

r e
−βEr (4.27)

With this, the probability distribution reduces to

Pr =
1

Z
e−βEr (4.28)

where
Z =

∑
r

e−βEr (4.29)

is a sum over all microstates of the subystem, weighed by e−βEr . This sum is central to the statistical
properties of the subsystem, and is known as the Partition Function for the subsystem. If the partition
function can be calculated for a system, all equilibrium properties of the system can be computed. Since
the sum is over all possible microstates of the system, the partition function is a function only of the
constraints on the system, the temperature of the system (through β), and constants associated with the
particles of the system and their interactions. It cannot depend on position or momentum (or spin) of the
particles, since these dynamical quantities are summed over in the sum over microstates). Typically, the
constraints are the number of particles of the system and the volume of the system (for systems interacting
with external fields, the constraints also include the field strength). The probability distribution (4.28)
is known as the Canonical Distribution. It describes the statistical behaviour of a system in thermal
equilibrium with an environment at temperature T , with β = 1/kBT .
Let us now justify dropping the second and higher order terms in the Taylor expansion (4.22). If the
subsystem exchanges energy with the environment, the expansion is

Senv(E0 − Er) = Senv(E0)− βEr +
1

2!

(
∂2Senv

∂E2
0

)
E2
r + .... (4.30)

The term quadratic in Er can be written as

1

2!

(
∂2Senv

∂E2
0

)
E2
r =

1

2!

(
E2

0

∂2Senv

∂E2
0

)(
Er
E0

)2

(4.31)
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If the number of particles of the environment is Nenv and the number of particles of the susbsystem
is N , then quantity E2

0(∂2Senv/∂E2
0) in the parenthesis scales as Nenv (The entropy and energy of the

environment both scale as Nenv). The ratio Er/E0 scales as N/Nenv. Therefore, the second order term
scales as N2/Nenv. Since the number of particles of the environment are practically infinitely larger than
that of the subsystem, this ratio is vanishingly small. Higher order terms will be suppressed by even higher
(inverse) powers of Nenv. This justifies ignoring second and higher order terms in the expansion (4.22).
Given the distribution (4.25), the mean value and fluctuation about the mean of any physically interesting
quantity can be computed. Let f be such a physical ‘observable’. In microstate r, it will take value fr.
Then, the average of f will be

f =
∑
r

Prfr

=
1

Z

∑
r

fre
−βEr (4.32)

The fluctuation (squared) about this mean value will be

∆f2 = f2 − (f)2

=
1

Z

∑
r

(
f2
r − f

2
)
e−βEr (4.33)

As an example, let us compute the mean energy of the system. This energy will fluctuate, since the
subsystem constantly exchanges energy with the environment. The mean energy of the system is

E =
1

Z

∑
r

Ere
−βEr

= − 1

Z

∑
r

∂

∂β
e−βEr

= − 1

Z

∂

∂β

∑
r

e−βEr

= − 1

Z

∂Z

∂β
(4.34)

This can be written as

E = − ∂

∂β
lnZ (4.35)

Here, the partial derivative with respect to β is computed keeping other quantities on which the partition
function depends constant (such as volume, number of particles, external field strengths, etc.). Equation
(4.35) gives the mean energy of the system as a function of other parameters (such as volume, number of
particles, etc.) and the temperature. The fluctuation (squared) in energy is

∆E2 = E2 − E2
(4.36)
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where

E2 =
1

Z

∑
r

E2
r e
−βEr

=
1

Z

∑
r

∂2

∂β2
e−βEr

=
1

Z

∂2

∂β2

∑
r

e−βEr

=
1

Z

∂2Z

∂β2

=
∂

∂β

[
1

Z

∂Z

∂β

]
− ∂

∂β

(
1

Z

)
∂Z

∂β

=
∂

∂β

[
∂

∂β
lnZ

]
+

1

Z2

(
∂Z

∂β

)2

=
∂2

∂β2
lnZ +

(
∂

∂β
lnZ

)2

(4.37)

Therefore

∆E2 = E2 − E2

=
∂2

∂β2
lnZ (4.38)

It is observed that the mean and fluctuation of energy can be computed if we know the form of the partition
function. This is generally true. The partition function contains all the information about averages
and fluctuations of physically interesting quantities. Therefore, it form the backbone of computational
statistical mechanics.
Given that the mean energy E is an extensive quantity and β an intensive quantity, if we scale the system
size by λ, E −→ λE, β −→ β. Therefore, lnZ −→ λ lnZ. Then, the logarithm of the partition function
scales with the size of the system. Then, it follows from (4.38) that ∆E −→

√
λ∆E. Therefore

∆E

E
−→ 1√

λ

∆E

E

This implies that
∆E

E
∝ 1√

N
(4.39)

where N is the number of particles of the subsystem. This agrees with what we had anticitpated in section
4.1 (see eqn.(4.17). Therefore, the energy of a macroscopic system in equilibrium with an environment is
sharply defined. It is (apart from microscopic fluctuations) as if the system is isolated from the environment.
If we could carve out this subsystem out of the entire system, keep it separated and isolated, and then
put it back, nothing would change, apart from microscopic fluctuations. In this sense, properties of a
macrocopic system in thermal equilibrium with an environment with mean energy E, and the same system
isolated, with conserved energy equal to E, are the same.
To compute other equilibrium properties such as entropy, pressure (in case of a gas) or magnetization (for
a magnetic system), we reorganize the sum occuring in the partition function. The sum over microstates
can be written as

Z =
∑
r

e−βEr

=
∑
E

N (E)e−βE (4.40)
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where N (E) is the number of microstates corresponding to a given value of energy of the system. This
way, the sum over microstates has been converted into a sum over all possible energies of the system, with
N (E) being a ‘degeneracy factor’ accounting for the fact that many microstates can have the same energy.
Next, we observe that N (E) is usually an exponentially increasing function of energy. For example, for a
system of N weakly interacting particles, N (E) ∼ E3N/2 (eqn.(1.16)). In general, we expect N (E) ∼ EαN
where α is some numerical factor. Then, the sum in (4.40) over a function of energy of the form f(E) =
EαNe−βE . Let us show that this function is sharply peaked at a particular value of energy, the same as
the mean energy E of the system given by (4.35). We rewrite the function f(E) as

f(E) = eαN lnE−βE

= eg(E) (4.41)

where g(E) = αN lnE − βE. This function has a maximum at a certain value of energy Ẽ = αN/β, with
g′′(Ẽ) = −β2/αN < 0. Expanding g(E) about Ẽ and retaining terms upto second order

g(E) ' g(Ẽ)− β2

2αN
(E − Ẽ)2 (4.42)

The

f(E) ' eg(Ẽ) e−(β2/2αN)(E−Ẽ)2

= eg(Ẽ)e−
1
σ2

(E−Ẽ
Ẽ

)2 (4.43)

This is a Gaussian distribution, with width

σ '

√
αN

β2Ẽ2
(4.44)

Since Ẽ scales with the number of particles of the system, σ ∼ 1/
√
N . For a macroscopic system, this is

vanishingly small. Therefore, the function f(E) sharply peaks at E = Ẽ and is practcally zero elsewhere.
Therefore, in the sum (4.40), there is practically just one term, so that

Z ' N (Ẽ)e−βẼ (4.45)

From (4.35), it immediately follows that this sharply defined energy is just the mean energy E of the
system. Since N (E) is the number of microstates corresponding to this energy, the entropy of the system
is

S = kB lnN (E) (4.46)

Taking the logarithm of the partition function gives

lnZ = lnN (E)− βE (4.47)

Using (4.46), we get

S = kB lnZ +
E

T
(4.48)

Since equation (4.35) gives E as a function of temperature and constraints such as volume, etc., equation
(4.48) gives the entropy of the system as a function of temperature and constraints. It is useful to recast
(4.48) in the following form

F = E − TS (4.49)

where the quantity

F = −kBT lnZ (4.50)
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is known as the Helmholtz function or the Helmholtz Free Energy (we will now stop using a ‘bar’ on
top of equilibrium values of energy, etc., since they are practically constant). We shall see later why
it is called ‘free energy’. For now, we show that this function can be used to compute all equilibrium
properties of the system. For definiteness, let us take a system of N particles in the gas phase, occupying
volume V and at temperature T . The partition function for this system will be a function of T, V and
N (apart from microscopic parameters such as masses of particles, interaction strength parameters, etc.).
Then F = F (T, V ) (suppressing the dependence on the number of particles). Under a tiny change in
temperature and volume, F,E and S will change. The change in F is given by

dF = dE − TdS − SdT (4.51)

Visualising S as a function of E and V ,

dS =

(
∂S

∂E

)
V

dE +

(
∂S

∂V

)
E

dV

=
1

T
dE +

P

T
dV (4.52)

where we have used (2.13). This gives
TdS = dE + PdV (4.53)

This is just the First Law of Thermodynamics. Substituting this in (4.51), we get

dF = −PdV − SdT (4.54)

From this, it follows that

P = −
(
∂F

∂V

)
T

S = −
(
∂F

∂T

)
V

(4.55)

This shows that the pressure and entropy of the system can be determined from F directly. Once P and
S are know, the energy of the system can be computed using

E = F + TS (4.56)

As an example, let us once again consider a system of N weakly interacting particles in equilibrium with
an environment at temperature T . We wish to determine the mean energy of the system, it entropy and
its equation of state (relation between pressure, volume and temperature). First, we need to calculate the
partition function (4.29), for which we need to identify the microstates, the energy of a given microstate.
As before, the microstate is a specification of position and momentum of every particle of the system
(taking into account redundancy due to interchange of identical particles). The energy of a microstate is
given by

E =

N∑
i=1

~p2
i

2m
(4.57)

The sum over microstates can be replaced by an integral∑
r

−→ 1

h3N !

∫
d3~r1...d

3~rNd
3~p1..d

3~pN (4.58)

where d3~ri = dxidyidzi and d3~pi = dpxidpyidpzi and the indistinguishability of the particles and discretiza-
tion of phase space have been taken into account. The partition function is then given by

Z =
1

h3NN !

∫
d3~r1...d

3~rNd
3~p1..d

3~pNe
−β
∑N
i=1 ~p

2
i /2m (4.59)
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We note that the position and momentum integrals for each particle are independent, since the exponent
factorizes. Further, they are all the same

Z =
1

h3NN !

∫
d3~r1...d

3~rNd
3~p1..d

3~pNe
−β~p21/2me−β~p

2
1/2m..e−β~p

2
N/2m

=
1

h3NN !

(∫
d3~r1

∫
d3~p1e

−β~p21/2m
)
..

(∫
d3~rN

∫
d3~pNe

−β~p2N/2m
)

=
1

h3NN !

(∫
d3~r

∫
d3~pe−β~p

2/2m

)N
=

1

h3NN !
ZN1 (4.60)

where

Z1 =

∫
d3~r

∫
d3~pe−β~p

2/2m (4.61)

can be thought of as the partition function for a single particle. The position integral is just a volume
integral over the entire available volume, so that it is equal to V . Further, the momentum integral factorizes
into integrals for each component, each integral being the same, equal to a Gaussian integral∫

d3~pe−β~p
2/2m =

∫
dpxdpydpze

−βp2x/2me−βp
2
y/2me−βp

2
z/2m

=

(∫
dpe−βp

2/2m

)3

=

(√
2mπ

β

)3

=

(
2mπ

β

)3/2

(4.62)

Therefore

Z1 = V

(
2mπ

β

)3/2

(4.63)

Then, the N -particle partition function (4.59) is

Z =
1

N !
V N

(
2mπ

h2β

)3N/2

(4.64)

To calculate the Helmholtz function, we calculate the logarithm of the partition function

lnZ = N lnV +N ln

(
2mπ

h2β

)3/2

− lnN !

= N lnV +N ln

(
2mπkBT

h2

)3/2

−N lnN +N

= N ln

(
V

N

(
2mπkBT

h2

)3/2
)

+N (4.65)

Then

F = −NkBT ln

(
V

N

(
2mπkBT

h2

)3/2
)
−NkBT (4.66)

The pressure of the system is given by (4.55)

P = −
(
∂F

∂V

)
T

=
NkBT

V
(4.67)
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which results in the familiar equation of state (2.16)

PV = NkBT

The entropy of the system is

S = −
(
∂F

∂T

)
V

= NkB ln

(
V

N

(
2mπkBT

h2

)3/2
)

+NkB +
3

2
NkB

= NkB ln

(
V

N

(
2mπkBT

h2

)3/2
)

+
5

2
NkB (4.68)

Finally, the energy of the system is calculated using (4.56)

E = F + TS

= −NkBT +
5

2
NkBT

=
3

2
NkBT (4.69)

which agrees with (2.9). The expression for entropy is essentially the same as obtained in section 2.2
(eqn.(2.8)).
Let us deduce the position and momentum distribution for a single particle of this system using the
Canonical probability distribution. The probability of a microstate, which corresponds to the positions
and momenta of the N particles precisely defined, is given by eqn.(4.28). For this system,

Er =
N∑
i=1

~p2
i

2m
(4.70)

and the partition function is given by (4.59) Then, the probability of a microstate in which particle 1 has
position ~r1 and momentum ~p1, particle 2 has position ~r2 and momentum ~p2 ...... is given by

P (~r1, ~p1, ~r2, ~p2..) =
1

Z
e−β

∑
i ~p

2
i /2m (4.71)

Then, the probability that a particle (say particle 1) has momentum ~p and position ~r, irrespective of the
positions and momenta of the other particles is given by

P (~r, ~p)d3~rd3~p =
1

Z

1

h3NN !
d3~rd3~p

∫
d3 ~r2..d

3~rNd
3~p2..d

3~pNe
−β
∑
i ~p

2
i /2m

= d3~rd3~p e−β~p
2/2m 1

Z

1

h3NN !

∫
d3 ~r2..d

3~rNd
3~p2..d

3~pNe
−β
∑N
i=2 ~p

2
i /2m (4.72)

It follows (from calculation similar to one in (4.60) ) that∫
d3 ~r2..d

3~rNd
3~p2..d

3~pNe
−β
∑N
i=2 ~p

2
i /2m = ZN−1

1 (4.73)

where Z1 is given by (4.61) and (4.63). It follows that

P (~r, ~p)d3~rd3~p =
1

Z1
d3~rd3~p e−β~p

2/2m

=
1

V

(
1

2mπkBT

)3/2

d3~rd3~p e−β~p
2/2m (4.74)
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The position probability distribution is obtained by integrating over momentum

P (~r)d3~r = d3~r

∫
d3~pP (~r, ~p)

=
1

V
d3~r (4.75)

which shows that the position probability is a constant. Therefore, the probability of detecting a particle
anywhere is the same, implying that in equilibrium the system will exhibit uniform density.
The momentum distribution is obtained by integrating over the position variable

P (~p)d3~p = d3~p

∫
d3~rP (~r, ~p)

=

(
1

2mπkBT

)3/2

d3~p e−β~p
2/2m (4.76)

which is just the Maxwell velocity distribution.
Next, let us analyze a system of N spins (the Ising model in the strong field limit) in equilibrium with an
environment at temperature T . A microstate of the system is a specification of spin labels {σ1, σ2, .., σN}.
The energy of the system for a given microstate is (see eqn.(3.19))

E(σ1, σ2, .., σN ) = −

(
N∑
i=1

σi

)
h (4.77)

The partition function for the system is given by (4.29)

Z =
∑

σ1σ2..σN

e−βE(σ1,σ2,..,σN )

=
∑

σ1σ2..σN

e−βE(σ1)e−βE(σ2)..e−βE(σN )

=

(∑
σ1

e−βE(σ1)

)(∑
σ2

e−βE(σ2)

)
..

(∑
σN

e−βE(σN )

)

=

(
+1∑

σ=−1

e−βE(σ)

)N
= ZN1 (4.78)

where E(σ) = −σh and Z1 can be visualised as the partition function for a single spin, and is given by

Z1 =
+1∑

σ=−1

e−βE(σ)

=

+1∑
σ=−1

eβhσ

= e−βh + eβh

= 2 cosh(βh) (4.79)

The partition function for the entire system is

Z = ZN1

= 2N coshN (βh) (4.80)
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The mean energy of the system can be computed using (4.35)

E = − ∂

∂β
lnZ

= −N ∂

∂β
ln cosh(βh)

= −Nh tanh(βh) (4.81)

which is, expectedly, the same as (3.27).
Let us now consider a system of N interacting particles with interaction potential energy U(~r1, ~r2, .., ~rN ).
The partition function for this system is

Z =
1

h3NN !

∫
d3~r1...d

3~rNd
3~p1..d

3~pNe
−β(

∑N
i=1 ~p

2
i /2m+U(~r1,..,~rN ))

=
1

h3NN !

∫
d3~p1..d

3~pNe
−β
∑N
i=1 ~p

2
i /2m

∫
d3~r1...d

3~rNe
−βU(~r1,~r2,..,~rN ) (4.82)

where we observe that the position and momentum integrals factorize. The momentum integrals have been
evaluated already ∫

d3~p1..d
3~pNe

−β
∑N
i=1 ~p

2
i /2m =

(∫
d3~pe−β~p

2/2m

)N
=

(
2mπ

β

)3N/2

(4.83)

Then

Z =
1

h3NN !

(
2mπ

β

)3N/2

ZV (4.84)

where

ZV =

∫
d3~r1...d

3~rNe
−βU(~r1,~r2,..,~rN ) (4.85)

can be thought of as the position part of the partition function. This part contains all the information
about interactions between the particles, and encodes within it the possibility of the interesting phenomena
of phase transitions.
It is interesting to compute the momentum probability distribution for a single particle. As before, the
probability that a particle has momentum ~p and position ~r, irrespective of the positions and momenta of
the other particles is given by

P (~r, ~p)d3~rd3~p =
1

Z

1

h3NN !
d3~rd3~p

∫
d3 ~r2..d

3~rNd
3~p2..d

3~pNe
−β(

∑N
i=2 ~p

2
i /2m+U(~r1,~r2,..,~rN ))

=
d3~rd3~p e−β~p

2/2m

Zh3NN !

∫
d3 ~r2..d

3~rNe
−βU(~r,~r2,..,~rN )

∫
d3~p2..d

3~pNe
−β
∑N
i=2 ~p

2
i /2m (4.86)

The momentum probability is calculated by integrating over ~r

P (~p)d3~p = d3~p

∫
d3rP (~r, ~p)

=
d3~p e−β~p

2/2m

Zh3NN !

∫
d3~rd3 ~r2..d

3~rNe
−βU(~r,~r2,..,~rN )

∫
d3~p2..d

3~pNe
−β
∑N
i=2 ~p

2
i /2m (4.87)

Given the form of the partition function (4.84), it is easy to see that the position integral term will cancel
and we are left with the Maxwell distribution as before

P (~p)d3~p =

(
1

2mπkBT

)3/2

d3~p e−β~p
2/2m (4.88)

which is very interesting. It tells us that even for a system of interacting particles in equilibrium, the
velocity distribution is Maxwellian.



38 CHAPTER 4. STATISTICAL DISTRIBUTION OF SUBSYSTEMS



Chapter 5

The Partition Function

5.1 Factorizing the Partition Function

The partition function of a system in equilibrium with an environment at temperature T has the following
important property: if the system can be viewed as a collection of weakly interacting subsystems, the
partition function for the system is a product of the partition fucntions of these subsystems. Let a sys-
tem consist of weakly interacting subsystems A,B,C.... A microstate of the system is then a complete
specification of the microstates of these subsystems. If r is a microstate of the system, it is just the speci-
fication {rA, rB, rC , ...} where rA, rB, .. are the microstates of A,B, ... Since these subsystems are weakly
interacting, the total energy of the system in microstate r is

Er = ErA + ErB + ... (5.1)

Then the partition function of the system is

Z =
∑
r

e−βEr

=
∑

rA,rB ,..

e−β(ErA+ErB+...)

=
∑
rA

e−βErA
∑
rB

∑
rB

e−βErB ..

= ZAZB... (5.2)

where ZA, ZB, .. are partition functions of subsystems A,B, ... This property also applies to different
degrees of freedom of the same system, so long as they interact weakly with each other. For instance, for a
system of spins on a lattice, so long as the spin degree of each entity interacts only weakly with its lattice
degree of freedom, the partition function will be a product of the partition functions associated with these
degrees of freedom. We observe something similar in case of degrees of freedom of the system associated
with different directions in space. As an example, consider a system of N weakly interacting particles. We
observed in eqn.(4.60) that the partition function of the system is given by

Z =
1

h3NN !
ZN1 (5.3)

where Z1 could be visualised as the partition function of a single particle. This happened because the
particles were assumed to interact weakly, so that the energy of the system could be written (approximately)
as the sum of energies of the particles. If the interaction between particles cannot be ignored, the energy
is not additive and it makes no sense to visualise a single particle as a subsystem with its own partition
function. For the weakly interacting system, however, we also observed that the ‘single particle partition
fucntion’ further factorised into three equal pieces (in the momentum integrals), corresponding to three
independent directions of motion. Similarly, for a system of weakly interacting spins (Ising Model in the

39
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strong field limit), the partion function once again factorized (equation (4.78)).
As a consequence of factorization of the partition function, the Helmholtz function of a system consisting
of weakly interacting subsystems is the sum of the Helmholtz functions for the subsystems

F = −kBT lnZ

= −kBT ln (ZAZB...)

= −kBT (lnZA + lnZB + ..)

= FA + FB + ...... (5.4)

As an application, let us consider a system of two weakly interacting species of particles (A and B),
each species further consisting of weakly interacting particles of one kind. For instance, this could be a
system of two different inert gases. Let the system be confined to volume V and at temperature T . The
partition function of the system is given by

Z = ZAZB (5.5)

where it follows from eqn.(4.64) that

ZA =
1

NA!
V NA

(
2mAπkBT

h2

)3NA/2

ZB =
1

NB!
V NB

(
2mBπkBT

h2

)3NB/2

(5.6)

where mA and MB are masses of the particles of the two species and NA, NB the number of particles. The
Helmhotz function of the system is

F = FA + FB

= −NAkBT ln

(
V

NA

(
2mAπkBT

h2

)3/2
)
−NBkBT ln

(
V

NB

(
2mBπkBT

h2

)3/2
)

−(NA +NB)kBT (5.7)

The pressure and entropy of the system are given by (4.55)

P = −
(
∂F

∂V

)
T

= −
(
∂FA
∂V

)
T

−
(
∂FB
∂V

)
T

=
NAkBT

V
+
NBkBT

V
= PA + PB (5.8)

where PA = NAkBT/V and PB = NBkBT/V are the partial pressures of the two systems (pressure exerted
if it were the only species present).This is just the Law of partial pressures. Note that P = PA + PB even
if each species consists of interacting particles, so long as the two species interact only weakly with each
other. This is just a consequence of the additive nature of the Helmholtz functions.

5.2 Partition function and specific heat

Let us now consider a striking property of the partition function: its behaviour under change of degrees of
freedom. In this context, let us ask: what allows us to treat atoms as rigid ‘billiard balls’ when computing
equilibrium properties of gases? For instance, if we wish to compute equilibrium properties of an inert gas
under conditions of ‘high temperature’ and ‘low pressure’, we model the system as a collection of spherical
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‘particles’ interacting through hard sphere interactions, ignoring the internal structure of the atoms. That
is, we compute the partition function assuming that a microstate of the system is a specification of the
position and momentum of each atom, implicitly ignoring their internal structure. Why don’t we consider
the system as a collection of protons, neutrons and electrons in equilibrium, with a microstate being
specified by the position and velocity of the centre of mass of each atom, and also the quantum ‘motion’
of the nucleons and the electrons about the centre of mass? The answer lies in the inherent discreteness
imposed by quantum mechanics, in addition to the Boltzmann probability distribution for microstates of a
system. Say, we model an atom as a rigid nuclear core (ignoring internal nuclear dynamics) and electrons
which occupy quantized energy states. Then, a microstate of the system is a specification of the position
and momentum of the rigid core, along with the electronic energy states. Let us now ask: what is the
probability of an electron being in an excited state relative to the probability of it occupying the lowest
energy (ground) state at temperature T? The probability is given by the Boltzmann distribution

Pexc
Pgrnd

= e−∆ε/kBT (5.9)

where ∆ε is the energy difference between the ground and excited states, and is of the order of an electron
volt. Then, this relative probability is negligible, unless the temperature T is of the order of Telec = ∆ε/kB,
which is of the order of Telec ∼ 100000K. The discreteness in energy introduced by quantum mechanics
has introduced a natural temperature scale Telec, and for T < Telec, just about all the electrons in such a
gas system are expected to be in their ground states. That is, their dynamics are ‘frozen’ because there is
not eneough thermal energy available to excite them. However, it is an excellent approximation to ignore
the discreteness of the energy associated with the centre of mass motion of the rigid core, since these
energy states are just the ‘particle in a box’ states, the box here being the container in which the gas is
enclosed. Given the macroscopic size of the volume of this container, the discreteness in these energy states
can be ignored (the energy eigenvalues depend on volume as V −2/3). There being no discreteness in this
energy spectrum, there is no inherent temperature scale associated with it, and therefore these translational
dynamics are excited at even the lowest of temperatures. Then, at ‘ordinary’ temperatures, an atom is
well approximated as a rigid, spherical ‘lump’ with no internal dynamics. But, what about molecules? Is
it a good approximation to consider molecules as rigid objects which, in addition to translational motion,
undergo rigid rotations? Or, do we need to consider a molecule as a system of atoms, with the dynamics
of individual atoms relevant? Again, we expect there to be intrinsic temperature scales with each possible
internal dynamics of a molecule. Unless the temperature is high enough top excite these (quantum)
dynamics, they will be ‘frozen’.
What would be a possible empirical signature of such internal dynamics being ‘unfrozen’ due to an increase
in temperature? Say, we have a system with two different kinds of degrees of freedom, with an energy
scale (and therefore temperature scale) associated with each degree. The microstate of the system is a
specification of each of these degrees. Let us denote this microstate with two indices rr′ with r being a
specification of the state of the degree of freedom with an associated temperature scale T0 which is much
lower than that associated with the other degree, a state of which is specified by index r′. Let this higher
temperature scale be T1. Then, for T0 << T << T1, just about all the states associated with the first
degree will be excited, and none of the states associated with the second degree will be excited. The
partition function of the system in this temperature range will be

Z '
∑
r

e
−βErr′0 (5.10)

where r′0 is the lowest energy state associated with the second degree of freedom. As long as T << T1, the
equilibrium properties of the system, such as its energy, entropy, etc. will recieve a contribution only from
the first degree of freedom, the second one effectively ‘frozen’. However, as the temperature of the system
is raised and becomes comparable to T1, suddenly the second degree of freedom will ‘wake up’ and the
microstates associated with it will be excited. One will now have a transitional region of temperatures in
which the nature of the partition function will start changing as it starts receiving contributions from these
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microstates. When T >> T1, effectively all the mocrostates associuated with this aspect of the system will
be excited, so that the partition function will change to

Z →
∑
r,r′

e−βErr (5.11)

What could be a possible empirical signature of this transition? The observable macroscopic quantity most
directly associated with the partition function is the (mean) energy of the system, given by (4.35)

E = − ∂

∂β
lnZ

However, the energy of a system is not easily measured. However, the response to the energy to a change
in temperature is measarable in terms of the heat capacity of the system (at constant volume)

Cv =

(
∂E

∂T

)
V

(5.12)

However, it is useful to define a related quantity which is independent of the size of the system. Therefore,
we define the Molar Specific Heat as the heat capacity of one mol of the system

cv =

(
∂E

∂T

)
V

, N = NA (5.13)

where NA is Avogadro number. As the nature of the partition function changes (with the frozen degrees
coming alive), the dependence of the energy of the system on its temperature will change fundamentally.
This can be detected by measuring the response of the energy of the system to its temperature, captured
by the specific heat of the system. Therefore, the specific heat of a system can be used as a tool to discover
microscopic degrees of freedom of a system in equilibrium. A sudden change in the behaviour of the specific
heat of a system is a signature that the system possesses more degrees of freedom than one excpected it
to have, and therefore, can be used to discover existence of possibly unknown degees of freedom.

5.3 The diatomic molecule

As a concrete example of degress of freedom ‘waking up’ with an increase in temperature, consider a gas
of diatomic molecules, such as H2. We assume that conditions are such that interaction between molecules
can be ignored. Then, the partition function of a system of N molecules will be of the form

Z =
1

N !h3N
ZN1 (5.14)

where Z1 is the partition function for a single molecule. We assume that the two atoms in the molecule are
identical, and the temperature is well below that at which internal electronic excitations of the individual
atoms become significant. Then, each atom in the molecule can be visualised as a point-like entity, its
internal structure not probed. To compute the partition function for a molecule, we ned the expression for
energy of a molecule in terms of its microstates. If classical physics were a good approximation, a microstate
of the molecule is a precise description of the position and momentum of each atom in the molecule. Let
us choose a Cartesian coordinate system, such that (x1, y1, z1) and (x2, y2, z2) are coordinates of the two
atoms. Then, the exnergy of the molecule has the form

E =
1

2
m
(
ẋ2

1 + ẏ2
1 + ż2

1

)
+

1

2
m
(
ẋ2

2 + ẏ2
2 + ż2

2

)
+ V (r) (5.15)

where m is the mass of each atom and V is the potential energy of the pair of atoms, which depends on
their relative separation r =

√
x2 + y2 + z2, where x = x1−x2, y = y1−y2 and z = z1− z2 are the relative
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coordinates. Let X,Y, Z be the coordinates of the centre of mass of the two atoms. Then

X =
x1 + x2

2

Y =
y1 + y2

2

Z =
z1 + z2

2
(5.16)

We can eliminate x1, y1, z1 and x2, y2, z2 in favour of the relative coordinates x, y, z and the centre of mass
coordinates X,Y, Z. Then, the expression for energy becomes

E =
1

2
M
(
Ẋ2 + Ẏ 2 + Ż2

)
+

1

2
µ
(
ẋ2 + ẏ2 + ż2

)
+ V (r) (5.17)

where M = 2m is the total mass of the molecule and µ = m/2 its ‘reduced mass’.
The bond length r0 of the molecule is just the equilibrium separation between the two atoms, corre-

sponding to the minimum of V (r). Expanding V (r) about this equilibrium separation and retaining terms
upto second order, we get

V (r) ' V (r0) +
1

2
V ′′(r0)(r − r0)2

= V (r0) +
1

2
k(r − r0)2 (5.18)

where k = V ′′(r0). We now introduce spherical polar coordinates (r, θ, φ) to describe the relative separation
of the two atoms

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ (5.19)

With this, the expression for energy of the system becomes (after dropping the constant term V (r0)

E =
1

2
M
(
Ẋ2 + Ẏ 2 + Ż2

)
+

1

2
µṙ2 +

1

2
k(r − r0)2 +

1

2
µr2(θ̇2 + sin2 θφ̇2) (5.20)

Finally, we introduce a radial coordinate η = r − r0, following which the energy expression becomes

E =
1

2
M
(
Ẋ2 + Ẏ 2 + Ż2

)
+

1

2
µη̇2 +

1

2
µω2η2 +

1

2
µr2(θ̇2 + sin2 θφ̇2) (5.21)

where ω =
√
k/µ. In this form, there is a clear separation of the energy expression into three terms. The

first piece corresponds to energy associated with the translational motion of the molecule

Etrans =
1

2
M
(
Ẋ2 + Ẏ 2 + Ż2

)
=

1

2M
~P 2 (5.22)

The second term corresponds to the vibrational motion of the two atoms about their equilibrium separation

Evib =
1

2
µη̇2 +

1

2
µω2η2

=
1

2µ
p2
η +

1

2
µω2η2 (5.23)

where pη = µη̇ is the momentum associated with the radial motion. The third piece is associated with
the rotational motion of the molecule about its centre of mass. To see this, we first approximate r by the
equlibrium separation r0 in the third piece. Then, this piece becomes

Erot =
1

2
µr2

0(θ̇2 + sin2 θφ̇2) (5.24)
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In the centre of mass frame, assuming for a moment that the separation between the atoms is fixed, equal
to the bond length r0, the only possible motion is rotational, with the centre of mass as rest. The kinetic
energy associated with this motion is just

Erot =
1

2
m~v2

1 +
1

2
m~v2

2 (5.25)

where ~v1 and ~v2 are the velocities of the two atoms in the centre of mass frame. However, since m1~v1 +
m2~v2 = 0, we can express these velocities in terms of the relative velocity ~v = ~v1 − ~v2 of the two atoms

~v1 =
1

2
~v

~v2 = −1

2
~v (5.26)

Then, the kinetic energy of the system is

Erot =
1

4
m~v2

=
1

µ
(v2
x + v2

y + v2
z)

=
1

2
µ
(
ẋ2 + ẏ2 + ż2

)
(5.27)

which is the same as (5.24), assuming the separation between the atoms is fixed. Then, the expression for
energy is additive in the three kinds of motions, which in this approximation (r ' r0 in the third term)
are completely independent

E = Etrans + Evib + Erot (5.28)

Then, the molecular partition function factorizes

Z1 = Ztrans Zvib Zrot (5.29)

Let us compute these three pieces separately. The translational partition function is essentially the same
as that we had calculated before (4.63)

Ztrans = V

(
2Mπ

β

)3/2

(5.30)

since we have argued that the translational motion of the molecule is expected to be well-approximated by
classical physics.
For a moment, let us assume that the vibrational and rotational motions are also well-described by classical
physics. The vibrational partition function is computed to be

Zvib =
1

h

∫ ∞
−∞

dη dpηe
−β[p2η/2µ+(1/2)µω2η2]

=
1

h

∫ ∞
−∞

dη e−(βµω2/2)η2
∫ ∞
−∞

dpη e
−(β/2µ)p2η

=
1

h

(
2π

µβω2

)1/2(2πµ

β

)1/2

=
2π

βωh
(5.31)

To compute the partition function for the rotational motion, we need to express the rotational energy in
terms of canonical momenta and coordinates. Since the energy is purely kinetic, the Lagrangian for the
system is

L =
1

2
µr2

0(θ̇2 + sin2 θφ̇2) (5.32)
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The momentum conjugate to coordinate θ is given by

pθ =
∂L

∂θ̇

= µr2
0 θ̇ (5.33)

and the moimentum conjugate to φ is

pφ =
∂L

∂φ̇

= µr2
0 sin2 θφ̇ (5.34)

These equations allow us to eliminate θ̇ and φ̇ in favour of pθ and pφ

θ̇ =
pθ
µr2

0

φ̇ =
pφ

µr2
0 sin2 θ

(5.35)

Then, the energy (Hamiltonian) of the system expressed in terms of coordinates (θ, φ) and conjugate
momenta pθ, pφ) is

E = pθθ̇ + pφφ̇− L

=
p2
θ

2µr2
0

+
p2
φ

2µr2
0 sin2 θ

(5.36)

The partition function is calculated to be

Zrot =
1

h2

∫ 2π

0
dφ

∫ π

0
dθ

∫ ∞
−∞

dpθ

∫ ∞
−∞

dpφe
−(β/2µr20) p2θ e−(β/2µr20 sin2 θ) p2φ (5.37)

The φ integral gives 2π and the momentum integrals are both Gaussian. This gives

Zrot =
1

h2
2π

∫ π

0
dθ

(
2πµr2

0

β

)1/2(
2πµr2

0

β
sin2 θ

)1/2

=
1

h2

4π2µr2
0

β

∫ π

0
dθ sin θ

=
1

h2

8π2µr2
0

β
(5.38)

The total partition function for N molecules is

Z =
1

N !h3N
ZNtrans × ZNvib × ZNrot (5.39)

Therefore

lnZ = N ln(Ztrans) +N ln(Zvib) +N ln(Zrot)− ln(N !h3N ) (5.40)

The mean energy of the diatomic gas is given by

E = − ∂

∂β
lnZ

= −N ∂

∂β
ln(Ztrans)−N

∂

∂β
ln(Zvib)−N

∂

∂β
ln(Zrot)

= NkBT
2

[
∂

∂T
ln(Ztrans) +

∂

∂T
ln(Zvib) +

∂

∂T
ln(Zrot)

]
(5.41)
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where partial derivatives with respect to β = 1/(kBT ) have been traded for partial derivatives with respect
to T . Clearly,

E = Etrans + Evib + Erot (5.42)

where Etrans = NkBT
2(∂Ztrans/∂T ), etc. The mean energy of the system is the sum of mean energies

associated with translational, vibrational and rotational degrees of freedom. As observed in section(5.2),
the specific heat of a system gives a glimpse into microscopic degrees of freedom of a system in thermal
equilibrium. The molar heat capacity of the diatomic gas is

cv =

(
∂E

∂T

)
V

, N = NA

= ctrans + cvib + crot (5.43)

where

ctrans =

(
∂Etrans
∂T

)
V

, N = NA

= NAkB
1

∂T

[
T 2 ∂

∂T
ln(Ztrans)

]
= R

1

∂T

[
T 2 ∂

∂T
ln(Ztrans)

]
(5.44)

where R = NAkB is the so-called ‘gas constant’. Similarly,

cvib = R
1

∂T

[
T 2 ∂

∂T
ln(Zvib)

]
crot = R

1

∂T

[
T 2 ∂

∂T
ln(Zrot)

]
(5.45)

Given the epressions for Ztrans, Zvib and Zrot, we get

ctrans =
3

2
R

cvib = R

crot = R (5.46)

which gives the total molar heat capacity to be cv = 7R/2, a constant. Following is an experimentally
determined molar specific heat for hydrogen gas

Figure 5.1: Variation of molar specific heat of hydrogen gas with temperature (shown on a logarithmic
scale)
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The figure shows an interesting behaviour. Given the values of ctrans, cvib and crot (eqns.(5.46)), it
appears that below T ∼ 500K, only translational degrees of motion are active, contributing 3R/2 to
molar specific heat. It is as if the vibrational and rotational motion of the molecules is ‘frozen’. Above
T ∼ 1000K, there is a change in the behaviour of the heat capacity. It starts to increase up to about
T ∼ 3000K, after which it saturates to a constant value cv = 3R/2 + R = 5R/2, till about T ∼ 10000K,
after which there is again a rise in the heat capacity, till it once again saturates at about T ∼ 30000K
to cv = 3R/2 + R + R = 7R/2. This tells us that there are two intrinsic temperature scales, one about
T1 ∼ 1000K and the other about T2 ∼ 10000K. These are clearly temperature scales associated with
vibrational and rotational motion of the diatomic molecule. Further, it is clear that quantum mechanics
is at work here, the discrete energy spacing between energy states of rotational and vibrational degrees
inducing the two temperature scales. Which of the two corresponds to T1 and which to T2 will be explored
next.

5.4 A first look at quantum statistical mechanics

The statistical mechanics of quantum systems is a fairly intricate topic, and an open area of research.
Instead of going through the foundations of quantum statistical mechanics, in this introductory course,
we will take the following point of view: given a system, described by quantum mechanics, in thermal
equilibrium with an environment at temperature T , all equlibrium (classical) properties of the system are
still computed exactly as for classical systems, except that the microstates are now quantum microstates.
Therefore, the partition function is still the quantity of fundamental interest, except that the sum over
microstates is now a sum over quantum states. Here, we immediately encounter a problem. Assuming
(incorrectly) that the state of the system in equilibrium is represented by a vector in a Hilbert space,
what are these microstates? Since all observables in quantum mechanics are represented by Hermitian
operators, with eigenvectors of these operators furnishing alternative bases in terms of which the state of
the system can be ‘resolved’, one could take the (complex) expansion coefficients in a given basis set as a
specification of the quantum microstate of the system. However, given that there are in principle several
such observables that one could come up with (which have physical relevance, apart from mathematically
being Hermitian), there seems to be an ambiguity as to which basis set is to be preferred. Since the
partition function involves a sum over states with the summand being exponential functions of energy,
the eigenvectors of the Hamiltonian present themselves as a preferred basis. Then, the quantum partition
function is to be computed as the sum (4.29)

Z =
∑
r

e−βEr (5.47)

where Er are the energy eigenvalues of the system, which depend on the Hamiltonian of the system. For
instance, for a system of weakly interacting particles confined to a volume V , the single particle partition
function will involve sum over energy eigenstates corresponding to the particle being confined to a ‘box’
of volume V . These eigenvalues are well known from any elementary course in quantum mechanics, and
we will use them at some point. Once the partition function has been so computed, all else, which
corresponds to extracting equlibrium information about macroscopic, classical observables (mean energy,
pressure, entropy, etc.) can be obtained as before from the Helmholtz function (4.50)

F = −kBT lnZ (5.48)

As mentioned, this is at best an operational point of view. What exactly are the foundations of quantum
statistical mechanics? What replaces the ideas of phase space, maximization of phase space volume for
isolated systems and principle of equal a-priori probabilities, from which we deduced the Boltzmann dis-
tribution? The current understanding seems to be the following: the state of a system in equilibrium with
an environment is not described by a vector, but rather a density operator. The reason is that in quantum
mechanics, a subsystem of a larger system is entangled with its environment. If observations are made
on this subsystem, the results of these observations are consistent with the subsystem, instead of being in
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a state which can be represented as a vector (a ‘pure’ state), are consistent with the subsystem being in
an ensemble of states each of which can be reprsented as a vector. That is, the subsystem behaves as if
it is ‘fluctuating’ between quantum states which can be visualised as vectors, with a set of probabilities
describing the relative weights of these ‘pure’ states. The key problem at the heart of the foundations of
quantum statistical mechanics seems to be to justify from first principles why a subsystem, in equilibrium
at temperature T , behaves as if it is described by an ensemble of energy eigenstates, which occur with the
Boltzmann probability distribution. We shall gloss over these questions and assume that there is some
justification which allows us to visualise a subsystem in equilibrium as an ensemble of energy eigenstates
occuring with the Boltzmann probability distribution. That is, the probability that the subsystem is in
energy eigenstate |Er〉 is

Pr =
1

Z
e−βEr (5.49)

Using this approach, let us analyse the behaviour of the molar specific heat of a diatomic molecule. We
have seen that it is a poor approximation to assume that the vibrational and rotational degrees of freedom
are well described by classical physics. Let us consider the single particle vibrational partition function
Zvib. The expression for energy of the system associated with vibrational motion is given by (5.23)

Evib =
1

2µ
p2
η +

1

2
µω2η2 (5.50)

which is just the expression for energy of a simple harmonic oscillator. If we promote this to an operator
in quantum mechanics, the energy eigenvalues are well known

εn =

(
n+

1

2

)
~ω (5.51)

where n = 0, 1, 2, ... is a natural number. The partition function is then

Zvib =
∞∑
n=0

e−β~ω(n+1/2)

= e−β~ω/2
∞∑
n=0

xn (5.52)

where x = e−β~ω. The series is simple to sum since x < 1. The result is

Zvib =
e−β~ω/2

1− e−β~ω
(5.53)

Next, let us compute the rotational partition function. the expression for rotational energy of the molecule
is (5.24)

Erot =
1

2
µr2

0(θ̇2 + sin2 θφ̇2) (5.54)

Let us compute the angular momentum of the diatomic molecule about its centre of mass. Let the positions
of the two masses relative to the centre of mass be ~r1 and ~r2 and their velocities in the centre of mass
frame be ~v1 and ~v2. The angular momentum vector for the system about the centre of mass is

~J = m~r1 × ~v1 +m~r2 × ~v2

=
m

2
~r × ~v (5.55)

where ~r = ~r1−~r2 = 2~r1 and ~v = ~v1−~v2. Since the motion is purely rotational, ~v is orthogonal to ~r. Then,
the magnitude of angular momentum is

J = µr0v (5.56)
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Using spherical polar coordinates for relative position of the two atoms, the relative position is given by

~r = r0r̂ (5.57)

where r̂ is a unit vector along the (relative) radial direction. Therefore, the relative velocity is

~v =
d~r

dt

= r0

(
θ̇ θ̂ + sin θφ̇ φ̂

)
(5.58)

where θ̂ and φ̂ are unit vectors associated with the two angular directions. Then

v2 = r2
0

(
θ̇2 + sin2 θφ̇2

)
(5.59)

The magnitude squared of the angular momentum is then

J2 = µ2r2
0v2

= µ2r2
0

(
θ̇2 + sin2 θφ̇2

)
= 2µr2

0Erot (5.60)

which gives

Erot =
J2

2µr2
0

(5.61)

Again, this expression is promoted to a corresponding operator expression in which the classical magnitude
(squared) of the angular momentum is replaced by a Hermitian operator Ĵ2, which has eigenvalues of the
form

J2
l = l(l + 1)~2, l = 0, 1, 2, ... (5.62)

Correspondingly, the energy eigenvalues are

εl =
~2

2µr2
0

l(l + 1) (5.63)

Further, there is a degeneracy associated with each value of l: there are 2l + 1 quantum states all with
the same value of l. Physically, this is because for a fixed magnitude of angular momentum, there are
2l + 1 values that its component in any one direction can possess. Since the energy depends only on the
magnitude of the angular momentum, all these states will be degenerate. Then, the partition function
corresponding to rotations is given by

Zrot =

∞∑
l=0

(2l + 1)e−(β~2/2µr20) l(l+1) (5.64)

Clearly, there are natural temperature scales associated with the vibrational and rotational motion. A
look at equation (5.52) shows that for vibrations, this scale is Tv ∼ ~ω/kB and for rotations, it is Tr ∼
~2/2µr2

0kB. For the H2 molecule, ω ∼ 1.3 × 1014s−1. This gives Tv ∼ 10000K, which is of the order of
the temperature scale T2 observed in the behaviour of the heat capacity of H2 in section (5.3). The bond
length of H2 molecule is r0 ∼ 0.7Å, which gives Tr ∼ 1000K, which we identify with the temperature scale
T1 associated with the behaviour of the heat capacity of hydrogen.
Given the exact expressions for Zvib and Zrot, let us estimate their form when the temperature is much
larger than the corresponding characteris tic temperature. In the limit T >> Tv, we can approximate Zvib
as

Zvib =
e−β~ω/2

1− e−β~ω

' 1

β~ω

=
2π

βωh
(5.65)
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which agrees with (5.31). Next, we compute Zrot in the limit T >> Tr. Zrot can be written as

∞∑
l=0

(2l + 1)e−Tr/T l(l+1)∆l (5.66)

where we have inserted ∆l = 1 in the sum. Define a variable x = l(l + 1)Tr/T such that as l changes
by one unit, x changes infinitesimally (in the limit T >> Tr). The change in x for a unit change in l is
dx = (2l + 1)∆lTr/T , so that (2l + 1)∆l = (T/Tr)dx. Substituting in (5.66), we get

Zr '
T

Tr

∫ ∞
0

e−x

=
T

Tr

=
8π2µr2

0

h2β
(5.67)

which agrees with (5.38).
We can compute the exact behaviour of the molar specific heats associated with the vibrational and
rotational degrees of freedom, using partition function expressions (5.53) and (5.64). The agrrement with
figure (5.1) is excellent.

5.5 The Equipartition Principle

Consider a system in equilibrium at temperature T whose energy can be expressed in the form

E(Q,α) = λQ2 + Ẽ(α) (5.68)

where Q is a coordinate or momentum component and α is the set of all coordinates and momentum
components, except Q. Further, it is assumed that the parameter λ > 0. The Equipartition Principle
states that in equilibrium, the mean value of λQ2 is kBT/2. Any such coordinate or momentum component
is referred to as a degree of freedom of the system. Then, the degrees of freedom of a system is the set
of all coordinates and momentum components which precisely specify its state. For example, a system of
N point-like particles has 6N degrees of freedom, since a complete specification of the state of the system
requires a specification of 3N coordinates and 3N momentum components.
In equilibrium, the probability of the system being in microstate (Q,α) is given by the canonical distribution

P (Q,α) =
1

Z
e−βẼ(Q,α)

=
1

Z
e−βλQ

2
e−βẼ(α) (5.69)

where Z is the partition function, given by (supressing factors arising out of phase space discretization and
identical nature of constituents)

Z =

∫
dQ

∫
dα e−βλQ

2
e−βẼ(α)

=

∫
dQ e−βλQ

2

∫
dα e−βẼ(α) (5.70)

The probability that the degree of freedom takes value Q, irrespective of values taken by the set α, is given
by

P (Q) =

∫
dα P (Q,α)

=
1

Z
e−βλQ

2
dαe−βẼ(Q,α)

=
1

ZQ
e−βλQ

2
(5.71)
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where

ZQ =

∫
dQ e−βλQ

2
(5.72)

can be though of as the partition function associated with the degree of freedom Q. Clearly, the probability
distribution for Q given by eqn.(5.71) is ‘Boltzmannian’. The mean value of the energy term associated
with Q can now be computed

λQ2 =
1

ZQ

∫
dQ (λQ2) e−βλQ

2

= − 1

ZQ

∂

∂β

(∫
dQ e−βλQ

2

)
= − 1

ZQ

∂ZQ
∂β

= −
∂ lnZQ
∂β

(5.73)

which is similar to eqn.(4.35). ZQ is easily computed (Gaussian integral) to give

ZQ =

√
π

βλ
(5.74)

Using this, the expression for mean value of the energy term is

λQ2 =
1

2
kBT (5.75)

which proves the principle.
As a simple application of the Equipartition Principle, consider a system of N interacting point-like par-
ticles, such that the energy of the system is

E =
~p2

1

2m
+

~p2
2

2m
+ ..+

~p2
N

2m
+ U(~r1, .., ~rN ) (5.76)

Let us compute the mean kinetic energy of particle 1. It is given by

K1 =
1

2m
~p2

1

=
1

2m
p2

1x +
1

2m
p2

1y +
1

2m
p2

1z (5.77)

Clearly, each term in (5.77) is a candidate for applying the Equipartition Principle, since each term is
quadratic in the momentum component (with positive coefficient) and the energy of the system can be

written as such a term plus everything else. Then, p2
1x/2m = p2

1y/2m = p2
1z/2m = kBT/2. Then, the mean

kinetic energy per particle of the system is

K1 =
3

2
kBT (5.78)

It immediately follows that the mean kinetic energy of the system of particles is

K =
3

2
NkBT (5.79)

Then, the temperature of a system of interacting particles in equilibrium is a direct measure of the mean
kinetic energy of the system. For a weakly interacting system (such that the potential energy contribution
can be ignored), the mean energy of the system is given by (5.79), which is what we computed in (4.69).
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As another example, let us consider a diatomic gas (such as H2). The expression for energy for a molecule
is given by

E =
~P 2

2M
+ Evib + Erot (5.80)

We have observed that it is an excellent approximation to consider the centre of mass degrees ~R (position
of centre of mass) and ~P (total momentum of molecule) as classical degrees. It immediately follows that

~P 2

2M
=

3

2
kBT (5.81)

Then, the temperature of a diatomic gas is a measure of the mean translational kinetic energy per molecule.
It is now easy to understand why the specific heat of such a system rises when a new degree of freedom
‘awakens’. The heat capacity of a system is given by (5.13), which essentially translates to the ratio of
energy exchanged by the system and a subsequent change in its temperature

cv '
∆E

∆T
(5.82)

Say, we introduce some energy ∆E into the system before the rotational threshold has been reached. At this
point, only the translational degrees are active. Then, since the mean translational energy is proportional
to the temperature of the system (eqn.(5.81)), the temperature of the system rises in proportion, such that
cv does not change. However, as the rotational threshold is reached, part of this energy goes into exciting
the now accessible rotational excited states, and the remaining fraction of this energy goes into increasing
the translational kinetic energy. since the temperature of the system is proportional to this piece of energy
only, there is a smaller change in temperature than would have been if the entire energy had gone into
increasing the translational kinetic energy. As a result, the specific heat is more. The same thing happens
when the vibrational degrees are excited.
It should be noted that the Equipartition Principle is a classical principle, applicable only of the energy
term corresponding to a degree of freedom is quadratic in the degree, and is not applicable to quantum
degrees of freedom.



Chapter 6

Free Energy

6.1 Helmholtz Free Energy

We have seen that an isolated system undergoes spontaneous processes that result in maximisation of
entropy. If the system is initially in equilibrium with a certain parameter λ fixed, if this parameter is
allowed to vary, it attains an equilibrium value λ̄ sauch that S(λ) is a maximum for λ = λ̄. Technically,
there is a probability distribution for the parameter λ, given by (2.19)

P (λ) = P (λ̄) e−(1/kB)|S′′(λ̄)|∆λ2 (6.1)

which is a Gaussian, peaked at λ = λ̄, with a width which scales with the number of particles of the system
as

∆λ

λ̄
∼ 1√

N
(6.2)

What if the system is not isolated (as is always the case), but in thermal equilibrium with an environment
at temperature T? Let the system undergo a spontaneous process such that an initially fixed parameter
λ is made ‘free’. As the parameter attains anew equilibrium value λ̄, the system will exchange energy
∆E with the environment. As a result, the entropy of the environment will change by ∆Senv = −∆E/T .
Then, if the change in entropy of the system during the process is ∆S, since the system along with the
environment can be considered ‘isolated’, it follows that

∆S + ∆Senv > 0

=⇒ ∆S − ∆E

T
> 0

=⇒ ∆(E − TS) < 0 (6.3)

Therefore, the direction of the spontaneous process corresponds to a decrease in the quantity F = E−TS,
and therefore the new equilibrium will correspond to its minimum. But, the quantity F is just the Helmholtz
function encountered in section 4.3 (eqn.(4.49)). We had observed that all equilibrium properties of a
system in equilibrium can be computed from this single function (which is directly related to the partition
function throught (4.50)). Now, we observe that this function is fundamentally important in another
way: a decrease in F indicates the direction of the ‘arrow of time’ for a system in equilibrium with an
environment. Then, F is to a system interacting with an environment what S is to an isolated system.
Clearly, since in principle there are no isolated systems, the function F (or its generalisations) lies at the
heart of Statistical Mechanics.
Let us make this principle of minimisation of F more precise. For a system in equilibrium at temperature
T , the probability of a microstate r is giben by the canonical distribution (4.28)

Pr =
e−βEr

Z
(6.4)

53
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Then, the probability of a ’free’ parameter taking a certain value λ is

P (λ) =
1

Z
N (λ)e−βE(λ) (6.5)

where N (λ) is the number of microstates with the free parameter equal to λ and E(λ) their energy. This
can be expressed as

P (λ) =
1

Z
eS(λ)/kB−βE(λ)

=
1

Z
e−(E(λ)−TS(λ))/kBT

=
1

Z
e−F (λ)/kBT (6.6)

where

F (λ) = E(λ)− TS(λ) (6.7)

is the value of the Helmholtz function for the parameter equal to λ. The exponent can be expanded in a
Taylor series. As usual, retaining terms up to second order, we get

P (λ) =
1

Z
e−F (λ̄)/kBT e−(1/2kBT )F ′′(λ̄)(λ−λ̄)2 (6.8)

which is a Gaussian with a characteristic width which scales as ∼ 1/
√
N . For a macroscopic system, the

probability of λ being equal to λ̄ is essentially unity. The function F (λ) is computed as before through the
partition function (which depends on the constraint λ aprt from temperature and other fixed constraints)

F (λ) = −kBT lnZ(λ) (6.9)

We now look at a few of the many examples of free energy minimisatio.

6.2 Elasticity of a rubber band

As a simple (but interesting) application of free energy minimisatio, let us analyze the origin of the elasticity
of a rubber band from the point of view of minimization of free energy. It is observed that when a rubber
band is heated, it contracts, instead of expanding. If a mass is suspended from the rubber band, heating it
will result in the mass being raised and work being done by the rubber band. To model this phenomena,
we visualise a rubber band as a one-dimensional chain of N links, each of length l0 which with equal energy
point parallel or antiparallel to the previous link (all in one dimension). The total length L of the rubber
band is the distance bewtween the beginning of the first link and the end of the last link. We assume that
the rubber band has mass m and suspended from a support in an environment with themperature T . We
wish to determine the length of the rubber band as a function of the ambient temperature
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The chain has no internal energy, buy has entropy. Referring to the above illustration, if the number
of links to the ‘right’ is nR and the number to the ‘left’ is nL, then

L = l0(nR − nL)

N = nR + nL (6.10)

where N is the total number of links and L is the length of the rubber band. Given the length L, the
entropy of the system is

S(L) = kB ln

(
N !

nR!nL!

)
= −NkB

[nL
N

ln
(nL
N

)
+
nR
N

ln
(nR
N

)]
= −NkB

2

[(
1 +

L

Nl0

)
ln

{
1

2

(
1 +

L

Nl0

)}
+

(
1− L

Nl0

)
ln

{
1

2

(
1− L

Nl0

)}]
(6.11)

The energy of the system is just the potential energy of the rubber band due to gravity. Choosing the
origin of potential energy at the point from which the band is suspended, the potential energy of the band
is E(L) = −mgL/2. Then, the free energy of the system is

F (L) = E(L)− TS(L)

= −mgL
2
− TS(L) (6.12)

The equilibrium length of the band is given by the condition F ′(L̄) = 0. Given the expression for F , this
results in

−mg
2

= TS′(L̄)

= −kBT
2l0

ln

(
1 + L/Nl0
1− L/Nl0

)
(6.13)

which is solved to give

L = Nl0 tanh

(
mgl0
2kBT

)
(6.14)

At ‘hight’ temperatures (T >> T0 = mgl0/2kB), this approximates to

L ' Lmax
T0

T
(6.15)

where Lmax = Nl0 is the maximum possible length.

6.3 Mean Field Theory of Ferromagnetism

As another illustration of free energy minimization, let us revisit the Ising model, first in in the strong field
limit, and then finally in the zero field limit. For a spin system in thermal equilibrium at temperature T ,
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we had computed the mean magnetization using both the microcanonical and the canonical distribitions
(in the latter, we had computed the mean energy, which is equivalent to a computation of the mean
magentization in the strong field limit). Let us, however, view this in the light of of minimization of free
energy. The magnetization of the system is not fixed, but will fluctuate, since the system exchanges energy
with the environment. Let us compute the free energy fo a fixed value of magnetization M (given by (3.18).
Fixing M fixes the number of ‘up’ and ‘down’ spins to

n+ =
N(1 +M)

2

n− =
N(1−M)

2
(6.16)

where N is the total number of spins. for fixed M , the entropy of the system is

S = kB ln

(
N !

n+!n−!

)
= −NkB

[n+

N
ln
(n+

N

)
+
n−
N

ln
(n−
N

)]
= −NkB

[
(1 +M)

2
ln

(
1 +M

2

)
+

(1−M)

2
ln

(
1−M

2

)]
(6.17)

The energy of the system, given M , is E(M) = −MNh where h is the external field. The free energy is,
therefore, given by

F (M) = E(M)− TS(M)

= −MNh+NkBT

[
(1 +M)

2
ln

(
1 +M

2

)
+

(1−M)

2
ln

(
1−M

2

)]
(6.18)

The derivative of F w.r.t M gives

F ′(M) = −Nh+
NkBT

2
ln

(
1 +M

1−M

)
(6.19)

The equilibrium magnetization M is given by F ′(M) = 0, which gives

M = tanh

(
h

kBT

)
(6.20)

which agrees with our previous calculation(s). It is easy to check that F ′′(M) > 0.
Let us now consider the Ising model with spin-spin interaction included. Is this a viable model of ferro-
magnetism? The expression for the total energy of the system is (eqn.(3.17))

E = −J
∑
<i,j>

σiσj − h
∑
i

σi (6.21)

which can be written as
E = −J

∑
<i,j>

σiσj −NhM (6.22)

Unfortunately, with spin-spin interaction taken into account, the energy is not just a function of magenti-
zation, since a given magnetization only fixed to number of ‘up’ and ‘down’ spins, whereas the interaction
between spins depends on how these ‘up’ and ‘down’ spins are distributed. To get around this problem,
we use the so-called Mean Field approximation. In this approximation, we assume that each spin interacts
with an average magnetization produced due to all the spins. This approximation, therefore, ignores the
local variations in the magnetization (fluctuations). To mathematically incorporate this approximation,
we write

σi = M + ∆σi (6.23)
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where ∆σi is the fluctuation (assumed small) of the ith spin about the mean magnetization M . Then,

E = −J
∑
<ij>

(M + ∆σi) (M + ∆σj)−NhM

= −J
∑
<ij>

(
M2 +M(∆σi + ∆σj) + ∆σi∆σj

)
−NhM

' −J
∑
<ij>

(
M2 +M(∆σi + ∆σj)

)
−NhM

= −JM2
∑
<ij>

1.− JM
∑
<ij>

(σi + σj − 2M)−NhM

= +JM2
∑
<ij>

1.− 2JM
∑
<ij>

σi −NhM (6.24)

where we have ignored terms quadratic in ∆σ. The sum over nearest neighbours can be written as∑
<ij>

1. =
1

2

∑
i

∑
i′

=
q

2

∑
i

=
Nq

2
(6.25)

where
∑

i′ is the sum over nearest neighbours of the ith spin and q is the number of nearest neighbours of
any one spin. Similarly ∑

<ij>

σi =
1

2

∑
i

σi
∑
i′

=
q

2

∑
i

σi

=
NqM

2
(6.26)

Substituting in the expression for energy gives (in the mean field approximation)

E(M) = −1

2
JNqM2 −NhM (6.27)

For a given M , the entropy of the system, as before, is

S = −NkB
[

(1 +M)

2
ln

(
1 +M

2

)
+

(1−M)

2
ln

(
1−M

2

)]
(6.28)

Then, the free energy of the system, as a function of M , is

F (M) = E(M)− TS(M)

= −1

2
JNqM2 −NhM +NkBT

[
(1 +M)

2
ln

(
1 +M

2

)
+

(1−M)

2
ln

(
1−M

2

)]
(6.29)

The equilibrium value of M is given by minimising this expression. Differentiating F w.r.t. M and equating
to zero gives the following relation

M = tanh

(
JqM + h

kBT

)
(6.30)
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This is a transcendental equation with solutions obtained as points of intersection of curves f(x) = x and

g(x) = tanh
(
Jqx+h
kBT

)
. Let us focus on the zero-field situation. In absence of a magnetic field, the equartion

reduces to

M = tanh
(
JqβM

)
(6.31)

Does this equation possess a solutionM 6= 0? If it does, it would correspond to a spontaneous magnetization
in absence of an external magnetic field, and would ‘explain’ the origin of ferromagnetism. For such a
solution to exist, the curves corresponding to equation f(M) = M and g(M) = tanh(JqβM) should
intersect at non-zero value(s) of M . Clearly, M = 0 is always a solution. The following shows two
possibilities, corresponding to Jqβ < 1 and Jqβ > 1
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Figure 6.1: Spontaneous Magnetization for T > TC = Jq/kB

The function g(M) = tanh(JqβM) saturates to ±1 for large absolute values of the argument. It will
intersect the curve f(M) = M for M 6= 0 if the slope of g(M) is greater than 1 at M = 0. Differentiating
g(M) w.r.t. M gives

g′(M) = Jqβ sech2(JqβM) (6.32)

At M = 0, this gives g′(0) = Jqβ. Then, the condition for intersection of the two curves for M 6= 0 is
Jqβ > 1 which gives T < TC , where TC = Jq/kB. This tells us that there exists a special temperature
T = TC below which there are three possible solutions to equation (6.31), M = 0,M = +Ms andM = −Ms.
However, for T > TC , there is only one solution, M = 0, corresponding to no magnetization. Which of the
solutions is the correct one for T < TC? Equation (6.31) corresponds to an extremum of the free energy
F (M). The correct solution is one which corresponds to a minimum. To see which of these corresponds
to a minimum, we observe from continuity that for T < TC but ‘close’ to it, M will be small. Let us
determine the form of F (M) for |M | << 1 For |M | << 1, we expand the logarithms in eqn.(6.29) upto
order M2

ln(1 +M) ' M − M2

2
+
M3

3
− M4

4

ln(1−M) ' −M − M2

2
− M3

3
− M4

4
(6.33)

Retaining terms up to order M4, the expression for free energy reduces to

F (M) ' −NkBT ln 2 +
NkB(T − TC)

2
M2 +

NkBT

12
M4 (6.34)

We now analyze the behaviour of f(M) = F (M)/N for T > TC and T < TC .

f(M) = f(0) +
kB(T − TC)

2
M2 +

kBT

12
M4 (6.35)
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where f(0) = −kBT ln 2. The first and second derivatives of f(M) are given by

f ′(M) = kB(T − TC)M +
kBT

3
M3

= (kBT )M

[(
1− TC

T

)
+
M2

3

]
(6.36)

f ′′(M) = kBT

[(
1− TC

T

)
+M2

]
(6.37)

For T > TC , f
′(M) = 0 has only one solution, M = 0, for which f ′′(0) > 0. Therefore, a zero

magnetization corresponds to a minimum of the free energy. On the other hand, for T < TC , there are
three possible solutions to f ′(M) = 0: M = 0,M = +Ms,M = −Ms where

Ms =

√
3

(
TC
T
− 1

)
, T < TC (6.38)

The second derivative of f at these values of M is given by

f ′′(0) = kBT

(
1− TC

T

)
< 0

f ′′(±Ms) = 2kBT

(
TC
T
− 1

)
> 0 (6.39)

Clearly, for T < TC , M = 0 corresponds to a maximum of f , whereas both M = ±Ms correspond to
degenerate minima (since f(+Ms) = f(−Ms). The following figure illustrates the behaviour of f(M) for
T > TC and T < TC (ignoring the constant term f(0))
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Figure 6.2: Behaviour of free energy for T > TC and T < TC

As the temperature of the spin system is lowered, for T > TC , there is no magnetization. However, for
T < TC , there is sontaneous magnetization with magnitude Ms
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Figure 6.3: Zero filed Magnetization vs T

What decides whether the spontaneous magnetization is positive or negative? In absence of any external
magnetic field, both directions are realized with the formation of domains of either direction. However,
the tiniest external field will force the magnetization along the direction of the external field. To see this,
let us take a closer look at the ‘equation of state’ (eqn.(6.30) in presence of a non-zero, but small magnetic
field h. We wish to compute the response of the system to a small change in external magnetic field, for
very small magnetic fields (approaching zero). The measure of this response is the magnetic susceptibility
of the system χm = ∂M/∂h. Differentiating eqn.(6.30) w.r.t. h

∂M

∂h
=

1

kBT

(
Jq
∂M

∂h
+ 1

)
sech2

(
JqM + h

kBT

)
(6.40)

Let us now compute the ‘zero filed susceptibility’, which is obtained by taking the limit h→ 0

∂M

∂h
=

1

kBT

(
Jq
∂M

∂h
+ 1

)
sech2

(
JqM

kBT

)
=

(
Jq

kBT

)
∂M

∂h
sech2

(
JqM

kBT

)
+

(
1

kBT

)
sech2

(
JqM

kBT

)
(6.41)

This can be solved for χm = ∂M/∂h

χm =
sech2

(
JqM
kBT

)
kBT − qJ sech2

(
JqM
kBT

)
=

1− tanh2
(
JqM
kBT

)
kBT − qJ

(
1− tanh2

(
JqM
kBT

))
=

1−M2

kBT − Jq(1−M2)
(6.42)

For T > Tc,M = 0. Therefore

χm =
1

kB(T − Tc)
, T > Tc, h = 0 (6.43)

For T < Tc (but close to Tc), using (6.38)

χm =
1

2kB(Tc − T )
, T < Tc, h = 0 (6.44)

Clearly, the zero filed susceptibility diverges at Tc. This means that the system is extremely sensitive to
changes in external field, about zero filed. This implies that the tiniest magnetic field close to Tc will
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magnetize the system along the direction of that field. The behaviour of the zero field susceptibility is
plotted
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Figure 6.4: Zero field magnetic susceptibility vs T

The Ising model, therefore, contains within it the possibility of spontaneous magnetization, in the
‘mean field’ approximation. Does this agree with exact computational results, and more importantly,
experiments? The mean field approximation correctly anticipates the onset of ferromagnetism in the Ising
model. However, it predicts the existence of ferromagnetism in any dimension. Exact solutions show
that there is no onset of spontaneous magnetization in one-dimensional systems, and that the precise
dependence of the magnetization with temperature is dimension dependent. Further, the temperature Tc
is not exactly that predicted in the mean-field approximation. Clearly, mean-field theory does not capture
some important aspect of this transition from paramagnetism to ferromagnetism. We shall revisit this
issue later.

6.4 ChemicalEquilibrium

Next, we turn to chemical reactions and chemical equilibrium. Consider a chemical reaction of the form

nA A+ nB B 
 nC C (6.45)

where nA molecules of A combine with nB molecules of B to give nC molecules of C. The reaction
is reversible and the species are in equilibrium, with number concentrations [A], [B] and [C] (number
of molecules per unit volume) of the three species . The equilibrium can be shifted by changing, say,
the temperature of the system. In prctice, chemical reactions usually occur at fixed temperature and
pressure, and not fixed volume and temperature. However, since the canonical probability distribution
corresponds to fixed volume, let us consider the above reaction as occuring in an enclosure of fixed volume
and temperature. We assume here that the reactants and products are in gas phase, so that they occupy
the entire available volume. We further assume that molecules of any one species interact only weakly with
each other and with the other molecules. the energy of any one molecule has the form

E = ET + Eint (6.46)

where ET is the translational kinetic energy and Eint is the internal energy (due to electronic, rotational,
vibrational degrees of freedom). Then, the partition function for any one species has the form

Z =
1

N !
ZNT Z

N
int (6.47)

Correspondingly, the Helmholtz free energy has the form

F (T, V,N) = −NkBT ln

(
V

N

(
2mπkBT

h2

)3/2
)
−NkBT +Nf0 (6.48)
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where the first two terms arise due to the translational part of the partition function (eqn.(4.66) and the
second term due to the internal degrees of freedom. Here,

f0 = −kBT lnZint (6.49)

Since the three species are weakly interacting, therefore the Helmholtz free energy of the system is

F = FA(T, V,NA) + FB(T, V,NB) + FC(T, V,NC) (6.50)

Say, the system is in equilibrium at the given temperature, with concentrations [A], [B] and [C]. If the
number of molecules of the species change by ∆NA,∆NB and ∆NC respectively, the change in the free
energy will be

∆F = ∆FA + ∆FB + ∆FC

=
∂FA
∂NA

∆NA +
∂FB
∂NB

∆NB +
∂FC
∂NC

∆NC (6.51)

The smallest change in the numbers is clearly ∆NA = −nA,∆NB = −nB and ∆NC = +nC respectively.
For this change,

∆F = −µAnA −−µBnB + µCnC (6.52)

where we encounter a new quantity, the (partial) derivative of F w.r.t. the number of particles

µ =

(
∂F

∂N

)
V,T

(6.53)

This quantity, which is a measure of the response of the Helmholtz free energy to a change in number
of particles of a system, is known as the chemical potential of the system. We will take a closer look at
the chemical potential and its physical interpretation later. For now, we observe that it is an intensive
quantity, just like pressure and temperature, since it is a ratio of two extensive quantities.
If the system is in chemical equilibrium (with the concentrations of reactants and products corresponding
to a mininum of free energy), then ∆F = 0. This gives the following condition for chemical equilibrium
for the reaction (6.45)

nCµC − nAµA − nBµC = 0 (6.54)

To see what this condition implies about the relative concentrations of reactants and products, we compute
the chemical potential for any one species from the free energy expression (6.48)

µ =

(
∂F

∂N

)
V,T

= kBT ln

(
N

V

(
h2

2mπkBT

)3/2
)

+ f0 (6.55)

Then, condition (6.54) reduces to (after a little algebra)

[C]nC

[A]nA [B]nB
=

(
QnCC

QnAA QnBB

)
e−∆f0/kBT (6.56)

where

Q =

(
2mπkBT

h2

)3/2

(6.57)

is the so-called quantum concentration and

∆f0 = nCf
0
C − nAf0

A − nBf0
B (6.58)
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The quantum concentration has a simple interpretation, if we express in terms of the thermal deBroglie
wavelength

λT =
h√

2mπkBT
(6.59)

The thermal deBroglie wavelength of a particle is the deBroglie wavelength associated with it due to
thermal energy εT ∼ kBT and corresponding momentum pT =

√
2mεT ∼

√
2mkBT

λT =
h

pT
(6.60)

In terms of this, the quantum concentration is

Q =
1

λ3
T

(6.61)

which has dimension of inverse length cube (hence ‘concentration’).
Equation (6.56) gives the relative concentrations of reactants and products in thermal equilibrium. At
a given temperature T , the ratio on the left hand side of the equation is a constant. This is known as
the Law of Mass Action. In addition to giving this law, minimisation of free energy also gives the precise
temperature dependence of this constant. Let us isolate the temperature dependence

[C]nC

[A]nA [B]nB
∼ T 3/2(nC−nA−nB)e−∆f0/kBT (6.62)

The internal free energy change (6.58) will depend explicitly on the internal degrees of freedom of the
molecules of reactants and products. Assuming that the temperature is low enough such that the internal
excitations are ‘frozen’, the molecules will be in their respective ground states. Then,

Zint ' e−βE0 (6.63)

where E0 is the ground state energy of the molecule. Then

∆f0 = nCE
C
0 − nAEA0 − nBEA0 (6.64)

As an example, consider the following reaction for ammonia synthesis

3H2 +N2 
 2NH3 (6.65)

This is an exothermic reaction, with ∆f0 = −92.4kJ/mol. Here, nA = 3, nB = 1, nC = 2. Then,

[NH3]2

[H2]3[N2]
∼ T−3e+92.4×103/RT (6.66)

where R is the gas constant. This equation shows that lowering the temperature will shift the equilibrium
towards incresed concentration of ammonia and vice-versa.
As another example, consider the equilibrium between atomic and molecular hydrogen

H2 
 2H (6.67)

For this reaction, eqn.(6.56) reduces to

[H]2

[H2]
=

Q2
H

QH2

e−∆E/kBT (6.68)

where ∆E is the dissociation energy ofH2 molecule. Given thatmH2 = 2mH , it follows thatQH2 = 22/3QH .
Therefore

[H]2

[H2]
=

1

8
QH2e

−∆E/kBT

=⇒ [H]

[H2]
= 2−3/2 1√

[H2]/QH2

e−∆E/2kBT (6.69)
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There are two factors on the right hand side of eqn.(6.69). The exponential factor supresses the formation
of atomic hydrogen at temperatures smaller than the characteristic temperature scale T0 ∼ ∆E/2kB ∼
25, 0000K. This is just a consequence of the Boltzmann factor, since the energy of the dissociated atoms is
larger, and so dissociation is supressed exponentially. The other factor, 1/

√
[H2]/QH2 can be interpreted

as follows: QH2/[H2] can be thought of as the cube of the number of deBroglie wavelengths that can fit
between two hydrogen molecules. At typical temperature and densities, this is a very small number. As
a result, the pre-factor of the exponential is very large. The pre-factor can be though to arise due to
entropy. Dissociation is entropically favorable, since all things being equal, two hydrogen atoms will have
more entropy than a hydrogen molecule (expecially with internal degrees ‘frozen’).



Chapter 7

Open Systems

7.1 The Gibbs distribution

We have seen that a system in equilibrium with an environment with which it can exchange energy satisfies
the canonical distribution (4.28)

Pr =
e−βEr

Z
(7.1)

In general, an ‘open’ system can exchange not just energy, but share volume, exchange particles, or
interact with ‘fields’ in the external environment. For instance, phase transitions can involve a change in
the volume of the system (with external pressure fixed), such as water vapour condensing to form liquid
water at atmospheric pressure. Given a change in the external temperature and pressure, the volume of the
system ‘responds’ by attaining an equilibrium value. A ferromagnetic material, interacting with an external
magnetic field, responds by attaining an equilibrium magnetization. A catalytic surface adsorbs particles
depending on external conditions of temperature and pressure. The particles are constantly exchanged with
the environment, and in equilibrium, a certain mean number of particles will adhere to the surface of the
catalyst. A polymer under tension will attain an equilibrium length depending on the external temperature
and tension. In all these examples, there is an external ‘field’ (such as pressure, tension, external magnetic
field) which couples to an extensive property of the system (volume, length, magnetization), this property
responding to changes in the external temperature and the external field. The probability distribution
is no longer canonical. To get the new probability distribution, we can take two alternative approaches:
(a) revert back to visualising the system and its environment as a single isolated system in equilibrium,
and derive the probability distribution for the system assuming the microcanonical distribution for the
system plus environment (b) include the interaction with the external field in the expression for energy of
the system, and directly use the canonical Boltzmann distribution. Let us start with approach (b), which
is the natural approach for certain situations, and later we will take approach (a) for a specific situation
which is not so intuitively visualised as situation (b).
We assume that interaction with the external field modifies the energy of the system to

E′ = E − fx (7.2)

where E is the energy of the system if the external interaction is absent (apart from thermal energy
exchange with the environment), f is the external field and x is an extensive parameter belonging to the
system which couples to field f . In general, the field can be a vector, in which case the interaction term
will have the form (−~f ·~x) where ~f is the vector field and ~x is a vector parameter. As an example, ~f could
be a magnetic field and ~x would be the magnetization ~M . Note that we are assuming that the systems
couples to the environment linearly through parametr x.
Given (7.2), the probability distribution for a microstate r of the system becomes

Pr =
1

ZG
e−β(Er−fxr) (7.3)

65
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where xr is the value of the parameter x in mocrostate r. The partition function is now

ZG =
∑
r

e−β(Er−fxr) (7.4)

Such a probability distribution is called a Gibbs distribution and the corresponding partition function a
Gibbs Partition Function.

Given this distribution, the mean value of x can be computed to be

x =
∑
r

xrPr

=
1

ZG

∑
r

xr e
−β(Er−fxr)

=
1

β

1

ZG

(
∂ZG
∂f

)
T

=
1

β

(
∂ lnZG
∂f

)
T

(7.5)

where the derivative of the partition function is computed at fixed temperature. The fluctuation (squared)
in x is

∆x2 = x2 − (x)2

=
1

β2

(
∂2 lnZG
∂f2

)
T

(7.6)

Given the extensivity of lnZG (since x is extensive), it follows that

∆x

x
∼ 1√

N
(7.7)

where N is the number of particles of the system. This is something that we anticipate by now, and expect
relative fluctuations to be ‘small’ for macroscopic systems. However, let us rewrite eqn.(7.6) as

∆x

x
=

√
(kBT ) κ

x
(7.8)

where

κ =
1

x

(
∂x

∂f

)
T

(7.9)

In this form, it is still clear that the relaitve fluctuation scales as 1/
√
N , since x scales as N and the pa-

rameter κ is intensive. However, in this form, we establish a connection between the microscopic statistical
fluctuations in parameter x to a ‘response’ in x due to a change in the external field f , through the directly
experimentally accessible ‘response function’ κ. Naively, one expects the relative fluctuations to be small.
However, we will see that under special values of temperature and external field f , the response function κ
can diverge, leading to fluctuations themselves diverging. Such a point in parameter space (T, f) is known
as a critical point. Then, adding external fields which interact with a system (in addition to thermal
interaction with the environment) is not only natural to analyse the behaviour of certain systems (such as
particles at constant external pressure, ferromagnet in external magnetic field, etc.) but is also a useful
tool to analyse the behaviour of statistical fluctuations in the system even in absence of such fields. In the
latter case, a field is added as an auxiliary mathematical tool to ‘probe’ the behaviour of these fluctuations
even in absence of such a field (in which case one computes the ‘zero-field’ value of κ).
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7.2 Rubber Bands, Revisited

As an example of the Gibbs distribution, let us go back to the simple model of a rubber band considered
in section 6.2) as a system of N links. Let us assume that the rubber band kept under tension by pulling
one end with a constant external force f . If, under the influence of the force f , the band stretches by ∆L,
the work done on the band is ∆W = f∆L. If this band was insulated from the external environment,
this would result in a change in energy of the band by ∆E = f∆L. Then, the quantity E′ = E − fL
would be conserved. Now, if the system is in a heat bath at temperature T , The probability distribution
of microstates is

Pr =
1

ZG
e−β(Er−fLr) (7.10)

where the sum is over microstates of the links, with each link having two possible ‘states’, pointing to the
‘left’, or to the ‘right’. In our simple model which ignores any dependence of internal energy of the band on
the orientation of the links, Er is just a constant, which can be ignored. Then, the probability distribution
is

Pr =
1

ZG
e−βfLr (7.11)

with
ZG =

∑
r

e−βfLr (7.12)

As before, the length L = l0(nR − nL) with l0 being the length of any one link, nR the number of links
pointing to the right and nL to the left (it is assumed that the band is pulled to the right). Formally, this
system is similar to the Ising model, where instead of spins, each link can be in to states σ = ±1, such that

L = l0
∑
i

σi (7.13)

A microstate of the system is just a specification of the set {σi}. Then, the partition function of the system
is

ZG =
∑
σ

e−βfl0
∑
i σi

= ZN1 (7.14)

where

Z1 =

+1∑
σ=−1

e−βfl0σ

= 2 cosh(βfl0) (7.15)

Then,
ZG = 2N coshN (βfl0) (7.16)

The mean length of the band is given by (7.5)

L =
1

β

(
∂ lnZG
∂f

)
T

=
1

β
N

∂

∂f
cosh(βfl0)

= Nl0 tanh(βfl0) (7.17)

which can be written as

L = Lmax tanh

(
fl0
kBT

)
(7.18)

which, for ‘large’ temperatures, reduces to

L ' Lmax
fl0
kBT

(7.19)
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7.3 The NPT Distribution

As another example, let us consider a system of interacting particles at constant external pressure P and
temperature T . If this system was not exchanging thermal energy with the environment, then if the volume
of the system was changed by ∆V , its energy would change by

∆E = −P∆V (7.20)

This is the same as ∆(E + PV ) = 0. Then, the effective conserved energy would be

E′ = E + PV (7.21)

If now the system exchanges thermal energy with the environment at temperature T , the probability of
microstate r will be

Pr =
1

ZG
e−β(Er+PVr) (7.22)

where Vr is the volume of the system in microstate r and

ZG =
∑
r

e−β(Er+PVr) (7.23)

The distribution (7.22) is often called the NPT distribution, since it corresponds to fixed N,P and T
(as opposed to the canonical distribution for a system of particles, often called the NVT distribution for
obvious reasons).

Given the external pressure P and temperature T , the mean volume of the system will be (eqn.(7.5))

V = − 1

β

(
∂ lnZG
∂P

)
N,T

(7.24)

The specific volume (volume per particle) of the system is

v =
V

N

= − 1

Nβ

(
∂ lnZG
∂P

)
N,T

(7.25)

Depending on the temperature and pressure, the same system of particles can have a different specific
volume (or equivalently, density), depending on its phase. The volume fluctuation is given by (7.6)

∆V 2 =
1

β2

(
∂2 lnZG
∂P 2

)
N,T

= − 1

β2
β

(
∂V

∂P

)
N,T

= −kBT
(
∂V

∂P

)
N,T

= (kBT ) κT V (7.26)

where

κT = − 1

V

(
∂V

∂P

)
N,T

(7.27)

is the isothermal compressibility of the system, a macroscopic, intensive property which is experimentally
easily measurable. The relative volume fluctuation is

∆V

V
=

√
(kBT ) κT

V
(7.28)
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which can be expressed in terms of specific volume

∆v

v
=

√
(kBT ) κT
N v

(7.29)

As discussed, this shows two things: (a) the microscopic statistical fluctuations in volume are directly
related to the macroscopic, directly measurable κT (b) the relative fluctuation scales as 1/

√
N . Again,

even though we expect this relative fluctuation to be negligible for macroscopic systems, this expectation
is in fact rooted in the assumption that κT is a smooth function of external temperature and pressure. We
will see that it need not be so.
To get a feel for the probability distribution (7.22), let us apply it to a system of weakly interacting particle
with energy given by (4.57). The sum appearing in the partition function (7.23) can be rearranged as

ZG =

∫ ∞
0

dV e−βPV Z(N,V, T ) (7.30)

where Z(N,V, T ) is the canonical partition function when the volume of the system is V . For a system of
weakly interacting particles, the canonical partition function is given by (4.64)

Z(N,V, T ) =
1

N !
V N

(
2mπkBT

h2

)3N/2

(7.31)

Then, the Gibbs partition function reduces to

ZG =
1

N !

(
2mπkBT

h2

)3N/2 ∫ ∞
0

dV V Ne−βPV

=

(
2mπkBT

h2

)3N/2(kBT
P

)N+1

(7.32)

The specific volume is given by (7.25)

v = − 1

Nβ

(
∂ lnZG
∂P

)
N,T

= −kBT
N

(−N − 1)
∂ lnP

∂P

' kBT

P
N >> 1 (7.33)

which gives the familiar ‘ideal gas’ equation of state

Pv = kBT (7.34)

The NPT distribution is the most natural distribution to analyze phase transitions in particle systems. It
is amenable to Monte Carlo techniques and can be used to computatioanlly explore gas to liquid to solid
transitions.

7.4 Ferromagnetism revisited

As another example, let us take the Ising model in presence of an external magnetic field. The expression
for energy (eqn.(3.17)) can be written as

E′ = E − hM (7.35)

where
E = −J

∑
<ij>

σiσj (7.36)
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is the spin-spin interaction energy and

M =
∑
i

σ (7.37)

is the total magnetic moment of the system (the magnetization M =M/N). The probability of microstate
r is

Pr =
1

ZG
e−β(Er−hMr) (7.38)

where

ZG =
∑
r

e−β(Er−hMr) (7.39)

The mean magnetic moment of the system at given external temperature T and magnetic field h is obtained
from (7.5)

M =
1

β

(
∂ lnZG
∂h

)
N,T

(7.40)

The specific magnetization is just M =M/N

M =
1

Nβ

(
∂ lnZG
∂h

)
N,T

(7.41)

The fluctuation in M is

∆M2 =
1

β2

(
∂2 lnZG
∂h2

)
N,T

=
1

β2
β

(
∂M
∂h

)
N,T

= kBT

(
∂M
∂h

)
N,T

(7.42)

Therefore, the fluctuation in the magnetization M is

∆M2 =
1

N2
∆M2

=
1

N2
kBT

(
∂M
∂h

)
N,T

=
1

N
kBT

(
∂M

∂h

)
N,T

=
1

N
(kBT ) χm (7.43)

where χm is the magnetic susceptibility. The relative fluctuation of magnetization is

∆M

M
=

√
(kBT ) χm
N M

(7.44)

which, once again, is directly related to the experimentally accessible χm. Again, one might naively con-
clude that fluctuations in magnetization should be imperceptible for macroscopic systems. However, as we
saw in section 6.3, we expect χm to diverge at h = 0, T = TC . Therefore, fluctuations at such critical points
cannot be assumed to be small, and the mean field approximation is not valid close to this point. We will
see that something similar happens for a system of interacting particles at a critical point corresponding
to special values of temperature and pressure.
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7.5 Energy Fluctuations

We have observed that if a statistical system couples to an external environment through a linear interaction
of an extensive parameter (x) with an external field (f), the (relative) fluctuation in the parameter is related
to the response of the parameter to a small change in the external field.
What is the response function corresponding to energy fluctuations? In the canonical distribution, energy
is already coupled to an external ‘field’: temperature. Given the canonical distribution, we have seen that
the mean energy and fluctuations in energy are given by (eqns (4.35) and (4.38)

E = − ∂

∂β
lnZ

∆E2 =
∂2

∂β2
lnZ (7.45)

Then

∆E2 = −∂E
∂β

= kBT
2∂E

∂T
= NkBT

2cv (7.46)

where cv is the specific heat of the system (at constant volume, since derivatives are taken at fixed volume)

cv =
1

N

(
∂E

∂T

)
V

(7.47)

Then, the relative fluctuation in energy of the system is

∆E

E
=

√
(NkBT 2) cv

E
2 (7.48)

Given that E scales as N , it is clear that the relative fluctuation scales as 1/
√
N . However, more impor-

tantly, the specific heat of the system (response function) is a direct measure of these statistical fluctuations.
Again, a possible divergence in specific heat would be a signature of large, diverging fluctuations.

7.6 The Grand Canonical Distribution

An open system can couple to the environment linearly in an interesting way: by exchanging particles
with the environemnt. The extensive parameter of the system coupled to the environment in this situation
is N , the number of particles. As before, the probability distribution changes. The question is: what is
the external field with which this parameter couples? The external field in this case happens to be the
chemical potential, encountered in section 6.4 (eqn.(6.53))

µ =

(
∂F

∂N

)
V,T

(7.49)

To see the connection, we need to first have a better insight into the significance of the chemical potential.
Consider a system consisting of two sub-parts of fixed volumes (V1 and V2) at fixed temperature T . Let
the sub-parts exchange particles (of the same species). The energy of a particle could be different in these
parts because of a different environment. For instance, there could be different kinds of fields in these two
parts with which the particle could interact, altering its energy as it moves from one to the other. Given
a fixed total number of particles N , in equilibrium, what fraction of particles will be in the two regions?
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The answer can be viewed from the point of view of free energy minimisation. Let there be N1 particles
in the first region and N2 in the second. The total free energy of the system is then

F = F1(N1, V1, T ) + F2(N2, V2, T ) (7.50)

We can view F as a function of variable N1 (N2 = N − N1). Extremising F w.r.t. N1 will given the
equilibrium values of N1 and N2. Differentiating F w.r.t. N1 gives

∂F

∂N1
=

∂F1

∂N1
+
∂F2

∂N1

=
∂F1

∂N1
− ∂F2

∂N2
(since ∂/∂N1 = −∂/∂N2)

= µ1 − µ2 (7.51)

where µ1 and µ2 are the chemical potentials of the two sub-parts. Equilibrium therefore requires that the
chemical potentials of the two parts should be the same. Then, chemical potential is a kind of ‘pressure’,
a difference in which results in exchange of particles.
We have seen that the chemical potential of a system is a response of the free energy of a system to a
change in the number of particles, at fixed volume and temperature. We can also visualise it as a response
of the entropy of the system to a change in particle number, but at fixed volume and energy, as opposed
to temperature. To see this, we consider a variation in the free energy of a system, in response not just to
a variation in volume and temperature (as was done in eqn.(4.54), but also, in addition, to a change in the
number of particles. Given that F = E − TS, a change in N,V, T produces a chhange

dF = dE − TdS − SdT (7.52)

where dE and dS are corresponding changes in energy and entropy of the system. Visualising S as a
function of E, V and N , we get

dS =

(
∂S

∂E

)
N,V

dE +

(
∂S

∂V

)
N,E

dV +

(
∂S

∂N

)
E,V

dN

=
1

T
dE +

P

T
dV +

(
∂S

∂N

)
E,V

dN (7.53)

Substituting back in (7.52) gives

dF = −PdV − SdT − T
(
∂S

∂N

)
E,V

dN (7.54)

This immediately gives (
∂F

∂N

)
V,T

= −T
(
∂S

∂N

)
E,V

(7.55)

which gives

µ = −T
(
∂S

∂N

)
E,V

(7.56)

We are now equipped to deduce the probability distribution for a system which can exchange, in addition
to energy, particles with the environment. We start by visualising the system plus the environment as a
single isolated system in equilibrium with a microcanonical probability distribution for microstates. Let
the system be in a microstate r corresponding to which it has Nr particles and energy Er (a microstate is
a precise specification of the number of particles and their positions and momenta). Then the number of
microstates accessible to the environment is N env(N−Nr, E−Er) where N is the total number of particles
of the system plus environment and E is the total energy. Then, since all microstates of the system plus
environment are equally probable, it follows that the probability of microstate r is

Pr =
N env(N −Nr, E − Er)

N (N,E)
(7.57)
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where N (N,E) is the total number of microstates of the system plus environment. Given the entropy of
the environment is Senv = kB lnN env, it follows that (Taylor expanding the entropy and retaining terms
upto first order)

N env(N −Nr, E − Er) = eS
env(N−Nr,E−Er)/kB

= eS
env(N,E)/kBe(1/kB)(−Er ∂Senv/∂E− Nr ∂Senv/∂N)

= eS
env(N,E)/kBe−β(Er−µNr) (7.58)

where µ = −T (∂Senv/∂N) is the chemical potential of the environment. Then, the probability distribution
is

Pr =
1

ZG
e−β(Er−µNr) (7.59)

with

ZG =
∑
r

e−β(Er−µNr) (7.60)

Clearly, the distribution (7.59) is of the general form (7.3), with the extensive parameter x identified as the
number of particles and the external field f as the chemical potential of the environment. The probability
distribution (7.59) is known as the Grand Canonical Distribution.
The mean number of particles of the system is (eqn.(7.5))

N =
1

β

(
∂ lnZG
∂µ

)
V,T

(7.61)

and the fluctuation in particle number is (eqn.(7.6))

∆N2 =
1

β2

(
∂2 lnZG
∂µ2

)
V,T

=
1

β

(
∂N

∂µ

)
V,T

(7.62)

As a simple application, we consider a system of weakly interacting particles in equilibrium at temper-
ature T and pressure P . We consider an imaginary region of volume V within this system of particles.
Particles will constantly enter and exit this region. We ask: on an average, how many particles are likely to
be found in this region? The probability distribution in this case is clearly Grand canonical, with the mean
number of particles given by eqn.(7.61). To compute the mean number of particles, we need to compoute
the Grand canonical partition function (7.63). We can organise the sum as follows

ZG =
∑
r

e−β(Er−µNr)

=

∞∑
N=0

eβµnZ(N,V, T ) (7.63)

where Z(N,V, T ) is the canonical partition function for N particles. For a weakly interacting system, this
is given by (4.64)

Z(N,V, T ) =
1

N !
V N

(
2mπkBT

h2

)3N/2

=
1

N !

[
V

(
2mπkBT

h2

)3/2
]N

(7.64)
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Then, the Grand partition function is

ZG =
∞∑
N=0

eβµnZ(N,V, T )

=

∞∑
N=0

1

N !

[
V

(
2mπkBT

h2

)3/2
]N

eβµn

=

∞∑
N=0

1

N !

[
eβµV

(
2mπkBT

h2

)3/2
]N

(7.65)

This is just an exponential series, which sums to

ZG = ee
βµV (2mπkBT/h

2)
3/2

(7.66)

The mean particle number can now be computed

N =
1

β

(
∂ lnZG
∂µ

)
V,T

=
1

β

∂

∂µ

[
eβµV

(
2mπkBT

h2

)3/2
]
V,T

= eβµV

(
2mπkBT

h2

)3/2

(7.67)

At this point, we need an expression for the chemical potential. Note that in the Grand canonical
distribution, µ is the chemical potential of the environment with which the system exchanges particles.
Here, the environment, as the system, consists of the same species of weakly interacting particles. Then,
we need the expression for the chemical potential of a system of weakly interacting particles at temperature
T and pressure P . In section 6.4), we had computed the expression for the chemical potential of such a
system (in that section, each ‘particle’ was a molecule with possible internal degrees of freedom). There,
the system was at constant temperature T and occupied a fixed volume V (eqn.(6.55)

µ = kBT ln

(
N

V

(
h2

2mπkBT

)3/2
)

+ f0 (7.68)

Here, the system is at pressure P and has no internal degrees of freedom (or they are ‘frozen’). We
can eliminate the number density N/V in favour of the pressure of the system using the ideal gas relation
(2.16). further, we can ignore the ‘internal’ contribution f0. Then, in terms of pressure and temperature,
the chemical potential is given by

µ = kBT ln

(
P

kBT

(
h2

2mπkBT

)3/2
)

(7.69)

Then,

eβµ =
P

kBT

(
h2

2mπkBT

)3/2

(7.70)

Substituting in the expression for N gives

N = eβµV

(
2mπkBT

h2

)3/2

=
PV

kBT
(7.71)
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which is the same as

PV = N kBT (7.72)

This is what one expects, except that here the number of particles is not fixed and there will be fluctuations
about the mean value N . The fluctuation is given by (7.62)

∆N2 =
1

β

(
∂N

∂µ

)
V,T

=
1

β

∂

∂µ

[
eβµV

(
2mπkBT

h2

)3/2
]
V,T

= eβµV

(
2mπkBT

h2

)3/2

= N (7.73)

Therefore

∆N

N
=

1√
N

(7.74)

The Grand canonical distribution is important to the study of surface chemistry. As an example,
consider a surface exposed to a gas. Under certain conditions (depending on the property of the surface
and the gas), the gas atoms (or molecules) can get adsorbed to the surface, creating a surface layer. It
is observed that an increase in the pressure of the gas (at fixed temperature) results in increased coating
of the surface with gas atoms, which saturates at high pressures. A simple model which accounts for this
visualises the surface as consisting of N adsorption sites, each of which can accomodate at most one atom.
In equilibrium, at temperature T and pressure P (of the gas), a certain (mean) number of atoms N will
occupy a fraction of the available sites N . To compute this fraction, we compute the Grand canonical
partition function for the system of atoms trapped to the surface. It is assumed that any atom trapped to
the surface has energy E = −ε, where ε > 0. That is, the surface sites act as potential ‘traps’ for atoms.
In more complicated models, there can be more than one of such trapped states with different energies.
The Grand partition function for the system can be computed using equation (7.63), with the modification
that there is an upper limit to the number of atoms that can stick to the surface (the limit being N )

ZG =
N∑
N=0

eβµN ZC(N,N , T ) (7.75)

where ZC(N,N , T ) is the canonical partition function for the system of atoms trapped on the surface,
occupying N sites out of the available N sites (note that N plays the role of volume). µ is the chemical
potential of the gas to which the surface is exposed. For simplicity, we assume that the gas is ideal (weakly
interacting atoms). A microstate of the system of N atoms trapped on the surface is just a specification of
the sites that are occupied (it is assumed in this simple model that the atoms cannot move on the surface,
therefore momentum variables are not relevant to the microstates). The energy of each microstate is simply
E = −Nε and the number of such (degenerate) microstates is

(N
N

)
. Then, the Canonical partition function

is

ZC =
∑
r

e−βEr

=

(
N
N

)
eNβε (7.76)
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The Grand partition function reduces to

ZG =
N∑
N=0

(
N
N

)
eβµNeNβε

=
N∑
N=0

(
N
N

)[
eβ(µ+ε)

]N
=

(
1 + eβ(µ+ε)

)N
(7.77)

The mean number of particles adsorbed is given by (7.61)

N =
1

β

(
∂ lnZG
∂µ

)
N ,T

= N eβ(µ+ε)

1 + eβ(µ+ε)
(7.78)

which gives
N

N
=

1

1 + e−βµe−βε
(7.79)

For a system of weakly interacting particles, eβµ is given by eqn.(7.70). Then,

e−βµ =
kBT

P

(
2mπkBT

h2

)3/2

=

(
kBT

P

)
λ−3
T (7.80)

where λT is the thermal deBroglie wavelength (eqn.(6.59), section 6.4). Substituting, we get

N

N
=

P

P +K(T )
(7.81)

where

K(T ) =
kBT

λ3
T

e−ε/kBT (7.82)

is a temperature dependent factor. The plot of N/N vs P looks as follows
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Figure 7.1: Langmuir Isotherm

Such isotherms are called Langmuir Isotherms. Qualitatively, the plotted isotherm seems to have the
characteristics of emirically observed coating of surfaces with gas atoms. For some gas/surface interfaces,
there is good agreement with experiments.
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7.7 The Gibbs and Landau Potentials

In the canonical probability distribution (section 4.3) we found that the partition function readily gives the
mean energy of the system, but to compute other equilibrium properties (such as pressure and entropy),
it is natural to define a ‘thermodynamic potential’ or ‘free energy’ (the Helmholtz funtion F ) which is
directly related to the partition function, and in terms of which all equilibrium variables of interest can be
directly computed

F (N,V, T ) = −kBT lnZ

P = −
(
∂F

∂V

)
T

S = −
(
∂F

∂T

)
V

E = F + TS (7.83)

Further, this thermodynamic potential has the following interpretation: If the system is destabilized, the
new equilibrium corresponds to a minimum of this free energy. It turns out that associated with every
statistical probability distribution is a free energy function which: (a) is directly related to the partition
function for that distribution (b) all equilibrium properties can be computed directly through this function
by taking suitable partial derivatives and (c) equilibrium of the system corresponds to a minimum of this
function.
Let us start with the NPT distribution (section 7.3) for a system of particles under constant temperature
and pressure conditions

Pr =
1

ZG
e−β(Er+PVr)

ZG =
∑
r

e−β(Er+PVr) (7.84)

In parallel with the arguments leading to the introduction of the Helmholtz function in section 4.3, we
reorganize the sum in the partition function

ZG =
∑
r

e−β(Er+PVr)

=
∑
E,V

N (E, V )e−β(E+PV ) (7.85)

where N (E, V ) is the number of microstates of the system corresponding to energy E and volume V . This
is directly related to the entropy of the system

S = kB lnN (E, V ) (7.86)

Then

ZG =
∑
E,V

eS(E,V )/kBe−β(E+PV )

=
∑
E,V

e−βG(E,V ) (7.87)

where
G(E, V ) = E + PV − TS(E, V ) (7.88)

Similar to the discussion in section 4.3, for a macroscopic system, the sum in 7.87 receives a contribution
from sharply defined values of E and V (which, in principle, fluctuate), such that

ZG(N,P, T ) ' e−βG(E,V ) (7.89)
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where we denote these sharp values by E and V . Taking the logarithm gives

G = −kBT lnZG (7.90)

Note that the partition function here is a function of three variables:N,P, T . Therefore, G is also a function
of these three variables. However, G is directly related to the (mean) energy, volume and entropy as

G(N,P, T ) = E + PV − TS (7.91)

The function G is known as the Gibbs Free Energy or the Gibbs Potential, and is the analog of the
Helmholtz function for this probability distribution. Given G (which can be directly computed through
the partition function), we can compute all other functions. To see this, consider an infinitesimal variation
in the external temperature and pressure (the control variables). This will lead to an infinitesimal change
in the Gibbs function, mean energy, volume and entropy, such that

dG = dE + PdV + V dP − TdS − SdT (7.92)

As in section 4.3, we can visualise S to be a function of N,E and V , such that under a change in P and
V (resulting in a change in E by dE),

dS =

(
∂S

∂E

)
V

dE +

(
∂S

∂V

)
E

dV

=
1

T
dE +

P

T
dV (7.93)

Substituting in equation (??), we get

dG = dE + PdV + V dP − T
(

1

T
dE +

P

T
dV

)
− SdT

= V dP − SdT (7.94)

from which it follows that

V =

(
∂G

∂P

)
T

S = −
(
∂G

∂T

)
P

(7.95)

which gives the mean volume and entropy directly as partial derivatives of the Gibbs function. The mean
energy can be computed from (7.103)

E = G− PV + TS (7.96)

Arguments similar to those in section 6.1 show that equilibrium corresponds to a minimum of the function
G.
Next, we take a look at the Grand canonical distribution, for which the probability distribution and the
partition function are

Pr =
1

ZG
e−β(Er−µNr)

ZG =
∑
r

e−β(Er−µNr) (7.97)

Once again, we can reorganize the sum in the partition function

ZG =
∑
r

e−β(Er−µNr)

=
∑
N,E

N (E,N)e−β(E−µN) (7.98)
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where N (E,N) is the number of microstates corresponding to N particles with energy E. As before, this
can be expressed in terms of entropy, such that

ZG =
∑
E,V

eS(E,V )/kBe−β(E−µN)

=
∑
E,V

e−βG(E,N) (7.99)

where
G = E − TS − µN (7.100)

Again, the contribution in the sum (7.99) comes from sharply defined values of E and N , such that

ZG(V, T, µ) ' e−βG(E,N) (7.101)

where we denote these sharp values by E and N . Taking the logarithm gives

G = −kBT lnZG(V, T, µ) (7.102)

The function G is (throught the partition function) a function of three variables: V, T and µ. Further, it
is directly related to the (mean) energy, entropy and particle number as

G(V, T, µ) = E − TS − µN (7.103)

the function G is known as the Grand Free Energy or the Landau Potential. Given G (computed through
the partition function), we can compute all other functions. To see this, consider an infinitesimal variation
in the external temperature, volume and chemical potential (the control variables). This will lead to an
infinitesimal change in the Landau potential, mean energy, entropy and particle number such that

dG = dE − TdS − SdT − dµN −Ndµ (7.104)

Visualising the entropy as a function of E, V and N , the change in entropy due to a change in V, T and µ
is (see section 7.6, eqn(7.105))

dS =

(
∂S

∂E

)
N,V

dE +

(
∂S

∂V

)
N,E

dV +

(
∂S

∂N

)
E,V

dN

=
1

T
dE +

P

T
dV +

(
∂S

∂N

)
E,V

dN

=
1

T
dE +

P

T
dV − µ

T
dN (7.105)

where we have used the expression for the chemical potential as derivative of entropy with respect to
particle number, eqn.(7.56). Substituting back in eqn.(7.104) gives

dG = −PdV − SdT −Ndµ (7.106)

from which it follows that

P = −
(
∂G
∂V

)
T,µ

S = −
(
∂G
∂T

)
V,µ

N = −
(
∂G
∂µ

)
V,T

(7.107)
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Finally, the mean enrgy of the system is given by

E = G + TS + µN (7.108)

To get a feel for the Landau potential, let us compute the pressure, mean number of particles and the
chemical potential for a system of weakly interacting particles, for which the Grand partition function was
computed in eqn.(7.66)

ZG = ee
βµV (2mπkBT/h

2)
3/2

(7.109)

The Landau potential is then given by (7.102)

G = −kBT lnZG(V, T, µ)

= −kBTeβµ
(
V

λ3
T

)
(7.110)

where λT is the thermal deBroglie wavelength (eqn.(6.59). The pressure of the system is computed to be

P = −
(
∂G
∂V

)
T,µ

= kBTe
βµ

(
1

λ3
T

)
(7.111)

and the mean number of particles is

N = −
(
∂G
∂µ

)
V,T

= eβµ
(
V

λ3
T

)
(7.112)

Dividing the equations for pressure and mean number of particles gives us the equation of state

PV = NkBT (7.113)

Further, equation (7.111) directly gives an expression for the chemical potential for a system of weakly
interacting particles

µ = kBT ln

(
P

kBT

(
h2

2mπkBT

)3/2
)

(7.114)

which we had obtained in equation (7.69) through more tedious means.
For a system with a variable number of particles, approach to equilibrium involves a decrease in the Landau
potential, with equilibrium corresponding to its minimum value.

7.8 The Lattice Gas

The Grand canonical distribution is a very powerful way of visualising the statistical mechanics of macro-
scopic systems. As a simple example, let us demonstrate that a system of interacting particles can be
‘mapped’ to the Ising model in the Grand canonical picture. Consider a system of interacting particles in
equilibrium at temperature T . We consider an imaginary, fixed volume V in space and ask the following:
as the external pressure and temperature of the system are varied, how does the mean number of particles
in this volume change? This is equivalent to analyzing the variation in density of the system as a function
of temperature and pressure. Clearly, since the volume and temperature are fixed and the number of
particles can vary, the Grand canonical distribution is the natural distribution to answer this question.
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The Grand partition function for the system is

ZG =
∞∑
N=0

eβµN ZC(N,V, T )

=

∞∑
N=0

eβµN

h3NN !

∫
d3N~r d3N~p e−β(

∑
i ~p

2
i /2m+U(~r1,..,~rN )) (7.115)

where U(~r1, .., ~rN ) is the interaction potential energy of the system. The momentum integrals are easily
evaluated, giving

ZG =
∞∑
N=0

eβµN

h3NN !
(2mπkBT )3N/2

∫
d3N~re−βU(~r1,..,~rN )

=

∞∑
N=0

zN

N !
QN (7.116)

where

z = eβµ
(

2mπkBT

h2

)3/2

(7.117)

and

QN =

∫
d3N~re−βU(~r1,..,~rN ) (7.118)

The interaction between a pair of particles is assumed to be short ranged, such that there is a natural
length scale σ. If the separation between the particles is less than σ, the particles strongly repel each
other. If the distance is larger than σ, they attract upto separation of the the order of a few σ. To
model this behaviour, we discretize volume V into N elementary ‘cells’. By assuming that a cell can be
occupied by at most one particle, we can replicate the effect of strong repulsion at short distance. Further,
we can replicate the effect of attraction between a pair at short distances beyond σ by assuming that if
two particles occupy neighbouring cells, they have an interaction potential energy −ε, the negative sign
corresponding to attraction. Beyond neighbouring cells, the interaction is asumed to be zero. Then, for a
fixed number of particles N , a microstate corresponds to a specification of which particle occupies which
cell. Note that in QN , the particles are distinguishable, the inherent indistinguishability accounted for the
1/N ! term in eqn.(7.116). The occupation of the ith cell can be described in terms of an occupation number
ni which is zero if the cell is unoccupied and one if it is occupied. Let us define a configuration C by a
specification of numbers ni, i = 1, 2, ..,N . Given a configuration C of N particles, the potential energy of
the system can be written as

U(C) = −ε
∑
<i,j>

ninj (7.119)

where
∑

i ni = N and< i, j > denotes nearest neighbours. When we sum over microsates of theN particles,
there is a N ! degeneracy in energy due to interchange of particles, which leaves energy unchnaged. Then,

QN = N !
∑
C
e−βU(C) (7.120)

In eqn.(7.116), the term zN can be written as

zN = eN ln z

= eln z
∑
i ni (7.121)

The Grand partition function now reduces to

ZG =
∑
C
e−βE(C) (7.122)
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where

E(C) = −ε
∑
<i,j>

ninj −
ln z

β

∑
i

ni (7.123)

where ni = ±1. Let us introduce a ‘spin’ variable σi associated with the ith lattice site, which takes values
σi = ±1. In terms of this variable, the occupation number can be written as

ni =
1

2
(1 + σi) (7.124)

such that ni = 1 corresponds to σi = 1 and ni = 0 corresponds to σi = −1. Substituting, we get

E(C) = − ε
4

∑
<i,j>

(1 + σi)(1 + σj)−
ln z

2β

∑
i

(1 + σi)

= − ε
4

∑
<i,j>

σiσj −
ε

2

∑
<i,j>

σi −
ln z

2β

∑
i

σi + constant terms (7.125)

Let q be the number of nearest neighbours of any one cell. Then∑
<i,j>

σi =
q

2
σi (7.126)

Therefore (dropping constant terms)

E(C) = − ε
4

∑
<i,j>

σiσj −
(
qε

4
+

ln z

2β

)∑
i

σi (7.127)

which is identical to the expression for energy for the Ising model (eqn.(3.17)), if we make the identification

J ←→ ε

4

h ←→ qε

4
+

ln z

2β
(7.128)

What is the analog of magnetization in this model? In the Ising model, the magnetization for a microstate
C is given by

M =
1

N
∑
i

σi (7.129)

where N is the total number of sites in our lattice model. Corresponding to configuration C, the total
number of particles occupying N sites is

N =
∑
i

ni

=
1

2

∑
i

(1 + σi)

=
N
2

+
1

2

∑
i

σi (7.130)

Then,
N

N
=

1

2
(1 +M) (7.131)

Let the volume of an elementary cell be v0 and the mass of a particle be m0. Then, the density of the gas
is

ρ =
m0N

N v0

=

(
m0

v0

)
N

N
(7.132)
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Therefore, N/N is just the density of the system measured in units of m0/v0. Therefore, the analog of
magneization is density of the system of particles

ρ =
1

2
(1 +M) (7.133)

In the Ising model, we have observed that the system spontaneously magnetizes below a critical temperature
TC . What does this imply for the lattice gas? To see this, let us revisit the Ising model and plot isotherms
corresponding to T > TC and T < TC . An isotherm in the Ising model is just a plot of the magnetization
M versus the magnetic field h at constant temperature. For T > TC , the system is in a paramagnetic
phase, with no spontaneous magnetization (in absence of h). Then, an isotherm will typically look as
follows
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Figure 7.2: Isotherm for Paramagnetic phase

The variation of M with h is smooth, with M = 0 when h = 0. However, for T < TC , there can be
a non-zero magnetization even in absence of a magnetic field. There is an ambiguity in the direction of
magnetization, with both directions possible (see figure 6.3). In presence of the magnetic field, though, the
magnetization is in the same direction as the magnetic field. A plot of magnetization vs magnetic field for
T < TC looks as follows
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Figure 7.3: Isotherm for Paramagnetic phase

In the figure, one cas see that there are two ‘phases’: ferromagnetic ‘up’ (more spins ‘up’) and ferro-
magnetic ‘down’ (more spins ‘down’) phases. However, at zero external field, both phases coexist in the
ferromagnetic substance, with the formation of domains of each kind. What is the analog of this in the
lattice gas? We have seen that the analog of magnetization is density of the system of particles. Given
the correspondence in eqns.(7.128), the quantity corresponding to the magnetic field h is (apart from the
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constant qε/4) is

h −→ 1

2β
ln z

=
1

2
µ+

3

2
ln

(
2mπkBT

h2

)
(7.134)

Along an isotherm, a changing h corresponds to a changing µ. Then, the isotherm for a system of particles
for T < TC will look as follows
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Figure 7.4: Lattice Gas Isotherm for T < TC

A change in chemical potential at fixed temperature and volume (same as fixed N ) is equivalent to a
change in pressure of the system. Then, the isotherm can be viewed as than demonstrating a change in
density with pressure. Clearly, there is a discontinuity in density at a specific pressure, which corresponds
to a change from a gas to a liquid state. The line of coexistence corresponds to both phases coexisting
for T < TC . The equation of this line is just h = 0, T < TC , which for a system of particles translates to
(through correspondence 7.128)

µ+
qε

2
+

3

2
kBT ln

(
2mπkBT

h2

)
= 0 (7.135)

What is the interpretation of the critical temperature TC and what is the analog of the paramagnetic
phase (for T > TC)? Just as fluctuations in magnetization for a magnetic system are large for h = 0, T = TC
(which is a ‘critical point’), similar behaviour exists in a system of particles where density fluctuations are
large and the system loses homogeneity. The critical point is obtained from eqn.(7.135) by setting T = TC .
for T > TC , the analog of tha paramagnetic phase is the so-called ‘fluid phase’ in which there is no
distinction between vapour and liquid.

7.9 Density variation in an external field

We have observed that if a system consists of two subsystems with different chemical potentials, there is a
flow of particles from the subsystem with a higher chemical potential to one with a lower chemical potential
(section 7.6). This ‘diffusion’ stops at equilibrium when the chemical potentials equalize. In general, if
there is a variation in the chemical potential of a system of particles from point to point, diffusion occurs till
the chemical potential at all points is the same. However, in general, this does not imply that the density
of the system is uniform at all point. In presence of external fields (electromagnetic or gravitational, for
example), the chemical potential, apart from density, is also a function of the ‘potential’ associated with
these fields. To keep the chemical potential uniform, the density must change from point to point because
of the variation in the potential associated with such fields. As a simple example, consider a syste of weakly
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interacting particles in presence of a uniform external gravitartional field, such as that near the surface of
the Earth. The density of the system in such a situation is not uniform, but changes with height above
the surface of the Earth. This variation in density, in equilibrium, can be visualised as a consequence of
the chemical potential depending on the potential associated with the gravitational field (apart from the
density of the system). To see this. consider an imaginary slice of volume ∆V at height z above the surface
of the Earth. The thickness of this slice is assumed to be much smaller than z, such that z can be assumed
to be a constant in this slice. Each particle in this slice has a gravitational potential energy U = mgz where
g is the acceleration due to gravity. Particles are free to enter and exit this imaginary slice. Therefore,
the system satisfies the Grand canonical probability distribution. In equilibrium, there will be a (sharply
defined) mean number of particles ∆N in this slice, which can be obtained from the Landau potential

∆N = −
(
∂G
∂µ

)
∆V,T

(7.136)

The Grand partition function for the system is given by eqn.(7.63)

ZG =

∞∑
N=0

eβµnZ(N,∆V, T ) (7.137)

where Z(N,∆V, T ) is the Canonical partition function for this system, given by
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(7.138)

The Grand partition function is then

ZG =

∞∑
N=0

1

N !

[
eβ(µ−mgz)∆V

(
2mπkBT

h2

)3/2
]N

= e

[
eβ(µ−mgz)∆V (2mπkBT/h

2)
3/2
]

(7.139)

The Landau potential is

G = −kBT lnZG

= −kBTeβ(µ−mgz)
(

∆V

λ3
T

)
(7.140)

where λT is the thermal deBroglie wavelength (eqn.(6.59). The mean number of particles is

∆N = −
(
∂G
∂µ

)
∆V,T

= ∆V eβµe−βmgz × 1

λ3
T

(7.141)

Them, the number density ρ(z) od the system is

ρ(z) = eβµe−βmgz × 1

λ3
T

(7.142)
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This gives the following expression for the chemical potential

µ = mgz + kBT ln

(
ρ(z)

λ3
T

)
(7.143)

In equilibrium, µ should be independent of z. Therefore, the right hand side of equation (7.143) is idepen-
dent of z. In particular, its value at any z should be equal to that at z = 0

mgz + kBT ln

(
ρ(z)

λ3
T

)
= kBT ln

(
ρ(0)

λ3
T

)
(7.144)

This gives the variation of density with z

ρ(z) = ρ(0) e−mgz/kBT (7.145)

This is just the so-called barometric equation, since it also gives the variation with pressure with height
above the surface of the Earth (assuming that the temperature does not vary with height, which is quite
incorrect!).

7.10 Critical point for stellar equilibrium

Stars start out as predominantly ‘clouds’ of hydrogen gas (GMC or Giant Molecular Clouds), held in
equlibrium (upto a critical density) by pressure due to collisions between gas molecules. This pressure
counters the gravitational attraction, which by itself would lead to gravitational collapse. Beyond a certain
critical density, the pressure due to simple collisions is not enough to counter gravitational collapse, and the
collapse proceeds, till a ‘protostar’ forms, leading to nuclear fusion acting as a source of energy, increasing
the pressure, creating a new equilibrium. Here, we roughly estimate an expression for this critical density.
We model the hydrogen gas as a system of weakly interacting particles, interacting through collisions and
mutual gravitational attraction. We use the Grand canonical ensemble, and pose the following question.
Imagine the cloud as a spherical region of radius R and volume V = (4/3)πR3 at temperature T , free to
exchange particles with a hypothetical environment. What is the density of this system in equilibrium?
The density of the system will in fact change with distance from the centre. What we are interested in is
the mean density ρ = M/V where M is the mass of the cloud. The Grand canonical partition function for
the system is

ZG =
∞∑
N=0

eβµN ZC(N,V, T ) (7.146)

where ZC(N,V, T ) is the canonical partition function

ZC(N,V, T ) =
1

h3NN !

∫
d3N~r d3N~p e−β(

∑
i ~p

2
i /2m+U(~r1,..,~rN )) (7.147)

where U is the gravitational potential energy of the system. We visualise the system as a continuous system
with mass density function ρ(~r). Then, the gravitational potential energy of the system is

U = −1

2
G

∫
d3~rd3~r′

ρ(~r)ρ(~r′)

|~r − ~r′|
(7.148)

The first simplification we make is to assume that we can replace ρ(~r) in eqn.(7.148) by the mean density.
Effectively, this is equivalent to computing the gravitational potential energy of a uniform sphere of radius
R and mass M (a simple exercise in mechanics!) which gives

U = −3

5

M2G

R
(7.149)

Here, M = NmH2 where mH2 is the mass of a hydrogen molecule. The next simplifying assumption is
to substitute M2 by M ×M where as before M = NmH2 , and where M is the mean mass of the cloud,
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given by M = NmH2/V where N is the mean number of hydrogen molecules (computed using the Landau
potential). The momentum integrals in ZC are easily computed, so that

ZC =
1

N !
V N

(
2mπkBT/h

2
)3N/2

e(3/5)βNmHMG/R (7.150)

Substituting in the expression for ZG gives

ZG =
∞∑
N=0

1
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eNβ(µ+3mHMG/5R)

= e

[
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(7.151)

The Landau potential is

G = −kBT lnZG

= −kBT
(
V

λ3
T

)
eβ(µ+3mHMG/5R)

= −kBT
(
V

λ3
T

)
eβ[µ+(3mH/5)MG(4π/3V )1/3] (7.152)

where we have used R = (3V/4π)1/3. The mean number of particles is

N = −
(
∂G
∂µ

)
V,T

=

(
V

λ3
T

)
eβ[µ+(3mH/5)MG(4π/3V )1/3] (7.153)

The pressure of the system is

P = −
(
∂G
∂V
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T,µ
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(7.154)

Dividing the pressure equation by the (mean) particle number equation, we get the equation of state

P =
NkBT

V
− NmH2GM

5

(
4π

3

)1/3

V −4/3 (7.155)

We now need to check for possible criticality. Is it possible for the compressibility of the system to diverge?
Equivalently, under what conditions

∂P

∂V
= 0 (7.156)

Taking the derivative of P with respect to V and setting it to zero gives the critical radius beyond which
pressure due to collisions cannot prevent gravitational collapse

RC =

(
45

16π

)1/2
√

kBT

m2
H2
Gρ

(7.157)

where ρ is the number density.
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Chapter 8

Statistical Mechanics of Radiation

8.1 Microstates of Electromagnetic Fields

We now analyse the statistical mechanics of a completely different kind of system: electromagnetic fields.
Given a system of atoms or molecules in thermal equilibrium at some temperature, there will always
be a distribution of electric and magnetic fields associated with such a system of particles, since atoms,
consisting of charged particles, can emit and absorb radiation through quantum mechanical transitions.
Consider a system of atoms occupying a region of space with volume V and at temperature T . It is
convenient to visualise this region of space as one without boundaries, since boundaries come with their
own set of conditions that need to be imposed on the physical system enclosed within them. Then, we
take this region of space to be a torus, constructed as follows: we start with a cube of edge L (V = L3)
and identify the opposite faces to form a torus. Mathematically, if we choose a coordinate system x, y, z
such that one edge of the cube has coordinates x, y, z = 0. Then, constructing a torus out of this cube is
equivalent to forcing ‘periodic boundary conditions’ on any function f(x, y, z) defined on this region

f(x+ L, y, z) = f(x, y, z)

f(x, y + L, z) = f(x, y, z)

f(x, y, z + L) = f(x, y, z) (8.1)

This region of space will be filled with electromagnetic fields in equilibrium with matter at temperature
T . Then, we can consider the system as two interacting subsystems, particles and fields, interacting with
each other through exchange of energy. The probability of the fields being in amicrostate r will be given
by a suitable statistical distribution. The question is: what are the mocrostates of this system and what is
the appropriate statistical distribution? A system of electromagnetic fields is just a distribution of electric
and magentic fields satisfying Maxwell’s equations. These fileds are confined to this toroidal region, with
a microstate being a specification of distributions ~E(x, y, z) and ~B(x, y, z). As always, we consider this
system in isolation (in absence of any other system) and determine the dependence of the energy of this
system on its microstates. Then, if say the canonical distribution is to be used, the probability of a
microstate will be given by eqn.(4.28). Since this system of fields is being considered in isolation (no
charged particles around), it will satisfy source-free Maxwell equations

~∇ · ~E = 0

~∇× ~E = −∂
~B

∂t
~∇ · ~B = 0

~∇× ~B =
1

c2

∂ ~E

∂t
(8.2)
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These equations describe a constained system. Therefore, to identify the physical degrees of freedom, we
introduce scalar and vector potential φ and ~A such that

~E = −~∇φ− ∂ ~A

∂t
~B = ~∇× ~A (8.3)

with these potentials now identified as the dynamic degrees of freedom. However, the ‘gauge freedom’ in
the system implies that there is a redundancy in this description, since given a pair of potentials (φ, ~A),
another pair (φ′, ~A′) related to the first through

~A′ = ~A+ ~∇λ

φ′ = φ− ∂λ

∂t
(8.4)

will give the same electric and magnetic field distributions for any scalar function λ. The fix is to choose
a gauge, which is just a restriction of the potentials. Given a pair (φ, ~A), we can always choose a λ such
that the new pair (φ′, ~A′) satisfies the conditions

φ′ = 0

~∇ · ~A′ = 0 (8.5)

This is just one of infinite possible choices, picked here for its simplicity. This choice is known as choosing
the Coulomb gauge. Then, the microstates of the system are all possible distributions ~A on the torus,
restricted by

~∇ · ~A = 0 (8.6)

Any such distribution must satisfy the periodic boundary conditions

~A(x+ L, y, z, t) = ~A(x, y, z)

~A(x, y + L, z, t) = ~A(x, y, z)

~A(x, y, z + L, t) = ~A(x, y, z) (8.7)

To understand the implications of this periodicity, let us consider a function f(x, t) such that f(x+L, t) =
f(x, t). Since the function is periodic in x with period L, it can be expanded in a Fourier series

f(x, t) =
∞∑
n=0

[
an(t) cos

(
2nπx

L

)
+ bn(t) sin

(
2nπx

L

)]
(8.8)

where an, bn are Fourier coefficients. The series can be equivalently written as a complex series of the form

f(x, t) =

∞∑
n=−∞

cn(t)ei2πnx/L

=
∞∑

n=−∞
cn(t)eiknx (8.9)

where kn = 2πn/L. The complex coefficients cn are given by

cn(t) =
1

L

∫ L

0
dx f(x, t)e−iknx (8.10)

This can be easily extended to periodic functions of three variables x, y, z with period L

f(x, y, z, t) =
∑
l,m,n

cl,m,n(t) eiklxeikmyeiknz

=
∑
l,m,n

cl,m,n(t) ei(klx+kmy+knz) (8.11)
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where kl = 2πl/L, km = 2πm/L and kn = 2πn/L and

cl,m,n(t) =
1

L3

∫ L

0
dx

∫ L

0
dy

∫ L

0
dz f(x, y, z, t) e−i(klx+kmy+knz) (8.12)

It is convenient to define a vector
~k =

2πl

L
î+

2πm

L
ĵ +

2πn

L
k̂ (8.13)

where î, ĵ, k̂ are unit vectors along x, y, z directions respectively. Then, the Fourier expansion can be
written as

f(~r, t) =
∑
~k

c~k(t) e
i~k·~r (8.14)

with

c~k(t) =
1

V

∫
d3~r f(~r, t) e−i

~k·~r (8.15)

Given that the function f is real, f∗(~r, t) = f(~r, t). This implies∑
~k

c∗~k e
−i~k·~r =

∑
~k

c~k e
i~k·~r (8.16)

Since the sum over ~k is over all positive and negative values of ~k, on the left hand side of equation(8.16),
we can replace ~k by −~k in the summand. Then, eqn.(8.16) reduces to∑

~k

c∗−~k e
i~k·~r =

∑
~k

c~k e
i~k·~r (8.17)

which leads to the condition c∗~k
= c−~k.

Going back to electromagnetic fields, the vector potential can be similarly expanded in a Fourier series

~A(~r, t) =
∑
~k

~c~k(t) e
i~k·~r (8.18)

where ~c~k are vector Fourier coefficients. We now implement the gauge condition ~∇· ~A = 0. Given eqn.(8.18),

the divergence of ~A is
~∇ · ~A = i

∑
~k

~k · ~c~k(t) e
i~k·~r (8.19)

Then, the gauge condition ~∇ · ~A = 0 is equivalent to the condition

~k · ~c~k = 0 ∀~k (8.20)

This just means that every Fourier mode is orthogonal to the associated direction of propagation of the

corresponding plane wave ei
~k·~r, given by the direction of vector ~k.

A microstate of the system is the specification of these Fourier coefficients. Now, we need an expression
for energy of the system in terms of these coefficients. The energy of a system of fields confined to volume
V is given by

E = EE + EM (8.21)

where

EE =
ε0
2

∫
d3~r ~E2 (8.22)

and

EM =
1

2µ0

∫
d3~r ~B2 (8.23)
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In the Coulomb gauge

~E = −∂
~A

∂t
~B = ~∇× ~A (8.24)

Using the Fourier expansion of the vector potential, we get

∂ ~A

∂t
=
∑
~k

~̇c~k(t) e
i~k·~r (8.25)

and
~∇× ~A = i

∑
~k

~k × ~c~k(t) e
i~k·~r (8.26)

We are now ready to compute the expression for the energy of the system. The electric contribution is
given by

EE =
ε0
2

∫
d3~r ~E2

=
ε0
2

∫
d3~r

∂ ~A

∂t
· ∂

~A

∂t

=
ε0
2

∫
d3~r

∑
~k,~k′

~̇c~k · ~̇c~k′ e
i~k·~r ei

~k·~r′

=
ε0
2

∑
~k,~k′

~̇c~k · ~̇c~k′
∫
d3~r ei(

~k+~k′)·~r (8.27)

Given the form of ~k, it is easy to show that∫
d3~r ei(

~k+~k′)·~r = V δ~k,−~k′ (8.28)

where V = L3. To see this, we observe that given α = 2nπ/L and β = 2mπ/L∫ L

0
dx ei(α+β)x =

∫ L

0
dx e(2πi/L)(n+m)x

=

{
0 n+m 6= 0
L n+m = 0

= L δn,−m (8.29)

and that integral in eqn.(8.28) is a product of three integrals of this type (integrals over x, y and z).

Equation (8.28) is just an expression of orthogonality of functions ei
~k·~r. Given this, the expression for the

electric part of energy reduces to

EE =
ε0
2
V
∑
~k

~̇c~k · ~̇c−~k

=
ε0
2
V
∑
~k

~̇c~k · ~̇c
∗
~k

=
ε0
2
V
∑
~k

∣∣∣~̇c~k∣∣∣2 (8.30)
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where we have used ~c−~k = ~c ∗~k
. Similar calculation for magnetic part of the energy gives

EM =
1

2µ0

∫
d3~r

(
~∇× ~A

)2

= − 1

2µ0

∑
~k,~k′

(~k × ~c~k) · (~k
′ × ~c~k′)

∫
d3~r ei(

~k+~k′)·~r

= − V

2µ0

∑
~k,~k′

(~k × ~c~k) · (~k
′ × ~c~k′) δ~k,−~k′

=
V

2µ0

∑
~k

(~k × ~c~k) · (~k × ~c−~k)

=
V

2µ0

∑
~k

(~k × ~c~k) · (~k × ~c
∗
~k

)

=
V

2µ0

∑
~k

∣∣∣~k × ~c~k∣∣∣2 (8.31)

Using eqn.(8.20), this reduces to

EM =
V

2µ0

∑
~k

k2
∣∣~c~k∣∣2

=
ε0
2
V
∑
~k

ω2
~k

∣∣~c~k∣∣2 (8.32)

where ω~k = c
∣∣∣~k∣∣∣ and we have used µ0ε0 = 1/c2.

The expression for the total energy becomes

E =
ε0
2
V
∑
~k

{∣∣∣~̇c~k∣∣∣2 + ω2
~k

∣∣~c~k∣∣2} (8.33)

Let us write the complex fourier coefficients ~c~k as

~c~k = ~a~k + i ~b~k (8.34)

where ~a~k and ~b~k are real. Given that ~c−~k = ~c ∗~k
, it follows that

~a−~k = ~a~k
~b−~k = −~b~k (8.35)

Furthur,
∣∣~c~k∣∣2 = ~a2

~k
+~b2~k

and
∣∣∣~̇c~k∣∣∣2 = ~̇a2

~k
+ ~̇b2~k

. Then,

E =
ε0
2
V
∑
~k

{(
~̇a2
~k

+ ω2
~k
~a2
~k

)
+
(
~̇b2~k + ω2

~k
~b2~k

)}
(8.36)

Equation(8.36) has the following interpretation. Each term in the sum is of the form (apart from the factor
of ε0V

1

2
ẋ2 +

1

2
ω2x2 (8.37)

which can be thought of as the energy of a harmonic oscillator with frequency ω and unit mass. Then,
eqn.(8.36) seems to suggest that electromagnetic radiation enclosed in some volume is mathematically
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equivalent to a collection of two types of harmnonic oscillaltors (corresponding to the a and b terms), each

type itself being a collection of oscillaotrs of different angular frequencies ω~k = c
∣∣∣~k∣∣∣ where ~k is the wave

number vector associated with a plane wave of the form ei
~k·~r. Note, however, that since ~a−~k = ~a~k and

~b−~k = ~b~k, and further since ω~k = ω−~k, we can visualise the set of ~k vectors to be divided into two subsets,
one set being the negative of the other. Then, we associate the oscillators of type a with one set and
oscillators of type b with the other. It is in fact useful to write the expression for energy as follows

E = ε0V
∑
~k

(
~̇a2
~k

+ ω2
~k
~a2
~k

)
(8.38)

where we identify ~a−~k with ~b~k (and don’t assume that ~a−~k = ~a~k). To make the identification with a system
of harmonic oscillators complete, we need to resolve vectors ~a~k into scalar components. Here, we use the
gauge condition (8.20) which is equivalent to the condition

~k · ~a~k = 0 (8.39)

Given a plane wave mode with wave vector ~k, we take two orthogonal unit vectors ε̂~k,1 and ε̂~k,2, such that

ε̂~k,1 · ε̂~k,2 = ~k · ε̂~k,1 = ~k · ε̂~k,2 = 0. Then, the set ε̂~k,1, ε̂~k,2, k̂ forms an orthonormal set. Then, given (8.39),
we can resolve the vector ~a~k as follows

~a~k = a~k,1 ε̂~k,1 + a~k,2 ε̂~k,2 (8.40)

where a~k,µ;µ = 1, 2 are scalar functions of time. Then, the expression for energy reduces to

E = ε0V
2∑

µ=1

∑
~k

(
ȧ2
~k,µ

+ ω2
~k
a2
~k,µ

)
(8.41)

We can absorb the factor ε0V into the definition of the functions a~k,µ (and also introduce a factor of 1/2,
such that finally, the energy has the form

E =

2∑
µ=1

∑
~k

(
1

2
ȧ2
~k,µ

+
1

2
ω2
~k
a2
~k,µ

)
(8.42)

Now, the identification is complete. Electromagnetic fileds enclosed in a closed region of volume V can be
thought of as an infinite collection of harmonic oscillators, two oscillators associated with each propagation
vector ~k in the plane wave expansion of the field configuration: one oscillator for each independent direction

of polarization. Further, both oscilaators corresponding to a given ~k have frequency ω~k = c
∣∣∣~k∣∣∣.

Given this interpretation, let us compute the mean energy of a system of elctromagnetic fields enclosed
in volume V . It follows from eqn.(8.42) that the mean energy of the system is the sum of mean energies
of the individual harmonic oscillators. The energy of each harmonic oscillator is of the form

E~k,µ =
1

2
p2
~k,µ

+
1

2
ω2
~k
a2
~k,µ

(8.43)

where p~k,µ = ȧ~k,µ is the momentum of the oscillator. Then, the mean energy of the oscillator equals
the sum of the mean kinetic energy and the mean potential energy. However, each is quadratic in the
corresponding momentum/coordinate. Therefore, it follows from the principle of equipartition (section
5.5) that the mean kinetic and potential energy are each equal to kBT/2. Therefore, the mean energy of
each oscillator is kBT . Then, the mean energy of electromagnetic fields at temperature T equals

E = kBT × number of oscillators (8.44)
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Let us compute the total number of oscillators. There are two oscillators for every wave mode with wave
vector ~k, given by eqn.(8.13)

~k =
2πl

L
î+

2πm

L
ĵ +

2πn

L
k̂ (8.45)

where l,m, n take integer values. Since there is an infinite number of such modes, there is an infinity of
oscillators, implying that the mean electromagnetic energy is infinite! This is clearly unphysical. How
does one interpret this? Further, what is the physical interpretation of these oscillators? It turns out that
quantum mechanics provides a very simple interpretation.

8.2 Quantum Theory of Radiation

Since quantum mechanics is believed to be the fundamental way to describe the physical world, in principle,
all systems are quantum mechanical. Often, though, classical physics is an excellent approximation. We saw
in section 5.4 that though it sufficed to describe translational degrees of freedom of atoms and molecules
classically, to describe electronic, vibrational and rotational dynamics, it was essential to use quantum
mechanics. So, let us try to quantise the system of harmonic oscillators that a system of electromagnetic
fields seems to consist of. That is, we consider electromagnetic fields as a quantum system. This is
equivalent to treating each term in the energy expression (8.42) as an operator, the Hamiltonian operator
corresponding to a given mode ~k and its associated polarisation

Ĥ =

2∑
µ=1

∑
~k

Ĥ(~k, µ) (8.46)

where Ĥ is the Hamiltonian operator for the entire system and Ĥ(~k, µ) is the Hamiltonian operator for the

harmonic oscillator corresponding to mode ~k and polarisation µ which has angular frequency ω~k = c
∣∣∣~k∣∣∣.

We know that the eigenvectors of Ĥ(~k, µ) (quantum states of well-defined energy) are labelled by natural
numbers n~k,µ, corresponding to eigenvalues (n~k,µ + 1/2)~ω~k

Ĥ(~k, µ)
∣∣∣n~k,µ〉 =

(
n~k,µ +

1

2

)
~ω~k

∣∣∣n~k,µ〉 (8.47)

Since the total Hamiltonian Ĥ is the sum of Hamiltonians Ĥ(~k, µ), its eigenvectors are just direct products
of eigenvectors of Hamiltonians Ĥ(~k, µ). In other words, these eigenvectors correspond to all these oscllators

being in some specific energy states. Then, if the oscillators are in quantum states
∣∣∣n~k1,µ1〉 , ∣∣∣n~k2,µ2〉 , ∣∣∣n~k3,µ3〉 , .......

then the system is a quantum state which is the sumultaneous eigenstate of the different oscillator Hamil-

tonians. This eigenstate is represented as
∣∣∣n~k1,µ1 , n~k2,µ2 , n~k3,µ3 , ...〉 with eigenvalue

En~k1,µ1 ,n~k2,µ2 ,n~k3,µ3 ,...
=

(
n~k1,µ1 +

1

2

)
~ω~k1 +

(
n~k2,µ2 +

1

2

)
~ω~k2 +

(
n~k3,µ3 +

1

2

)
~ω~k3 + .... (8.48)

The lowest energy state of the electromagnetic field corresponds to all the oscillators being in their respective
ground states, with n~k,µ = 0 ∀ ~k, µ. This energy state, unfortunately, has infinite energy, as is clear from

eqn.(8.48). The way around this problem is to redefine the ‘zero’ of energy such that the ground state
energy is zero. This of course involves subtracting an infinite amount of energy from (8.48), and is clearly
problematic. We shall not pursue this further here, but it needs to be mentioned that the quantum
mechanical description of electromagnetic fields is an example of a Quantum Field Theory, and such
theories are plagued with problems of infinities. However, there is a consistent way of resolving these
problems, but this is not the place for it.

Then, we find that the quantum mechanical description of electromagnetic fields gives rise to quantum
states which describe ground, first, second...excited states of a set of harmonic oscillators, with the energy
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of the system characterised by quantum numbers n~k,µ such that the energy of the system is

E
{
n~k,µ

}
=

2∑
µ=1

∑
~k

n~k,µ ~ω~k (8.49)

The gound state of the system corresponds to all the oscillators in their ground state, and has zero energy

(because of the infinite subtraction carried out). The first excited state has energy ~ω~k where
∣∣∣~k∣∣∣ = 2π/L,

and corresponds to one oscillator, with frequency ω~k in an excited state. In fact, there are six degenerate
ground states, corresponding to (l = 1,m = 0, n = 0), (l = 0,m = 1, n = 0), (l = 0,m = 0, n = 1)
(there are two polarisations for each such state, which makes it six states). However, what exactly is
the interpretation of these oscillator quantum states? To discover it, we compute the momentum of the
electromagnetic fields. The momentum of a system of electromagnetic fields is proportional to the integral
of the Poynting vector over all space. We shall not pursue the calculation here, but is is not difficult to
show that if we compute this integral, it can be written, once again, in terms of our harmonic oscillator
variables. Once we quantise the resulting expression, this momentum vector becomes an operator, whose

eigenvectors are just the energy eigenvectors
∣∣∣n~k1,µ1 , n~k2,µ2 , n~k3,µ3 , ...〉 with eigenvalues

~P
{
n~k,µ

}
=

2∑
µ=1

∑
~k

n~k,µ ~~k (8.50)

The ground state has zero momentum. but, consider a quantum state corresponding to n~k,µ = 1 for some

~k, µ (and zero for all others. This state has energy and momentum

E~k,µ = ~ ω~k
~P~k,µ = ~ ~k (8.51)

Given that ω~k = c~k, it follows that

E~k,µ =
∣∣∣~P~k,µ∣∣∣ c (8.52)

Which is the relation between energy and momentum of a massless particle (a particle moving with the
speed of light). Then, the most natural interpretation of such a quantum state is that it describes a photon
with momentum p = ~ ~k and energy E = ~ ω~k = h ν~k where ν = ω/2π is the frequency of the ‘oscillator’,
now identified as the frequancy of the photon. Next, consider a state with n~k1,µ1 = 1, n~k2,µ2 = 1 for some

~k1,~k2, µ1, µ2 and all other quantum numbers zero. This state has energy E = h ν~k1 +h ν~k2 and momentum

~P = ~ ~k1 + ~ ~k2. This state is interpreted as a state with two photons, one with energy/momentum

hν~k1/~
~k1 and the other with energy/momentum hν~k2/~

~k2. Then, the state
∣∣∣n~k1,µ1 , n~k2,µ2 , n~k3,µ3 , ...〉 is one

corresponding to n~k1,µ1 photons with energy hν~k1 , momentum ~~k1 and polarisation µ1, n~k2,µ2 photons with

energy hν~k2 and momentum ~~k2, and so on. We now need to adress the ‘polarisation’ of a photon and
what physical quantity it corresponds to. It turns out that the polarisation of a photon is a measure of its
quantum spin. Just as an electron has two intrinsic spin states, so does a photon. These spin states have
spin ±~. In case of an electron, the spin can have components ±~/2 along any direction in space. However,
in case of a photon, the component of spin is well-defined only along the direction of momentum. The spin
of a photon can be parallel or antiparallel to the direction of momentum, with values ±~ (plus for direction
along momentum and minus for direction opposite to momentum). Then, the polarisation of a photon is
related to its spin state. However, the polarisation vectors we constructed are not the ones corresponding
to these spin values. Instead, the spin states are linear superpositions of these two polarisation states.
From now on, we will take the label µ to stand for the two spin states.
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8.3 The Planck Distribution

Now, we turn back to the statistical distribution of electromagnetic fields at temperature T . The mi-
crostates of the system are quantum states, each specified by the number of photons corresponding to
wave vectors ~k (a measure of momentum) given by eqn.(8.13). The probability distribution for these
microstates is just the canonical distribution (4.28)

P
{
n~k,µ

}
=

1

Z
e
−βE

{
n~k,µ

}
(8.53)

with

Z =
∑
{
n~k,µ

} e−βE
{
n~k,µ

}
(8.54)

where E
{
n~k,µ

}
is given by (8.49). The partition function is computed to be

Z =
∑
{
n~k,µ

} e−βE
{
n~k,µ

}

=
∑

n ~k1,µ1
,n ~k2,µ2

,..

e
−β
(
n ~k1,µ1

hν~k1
+n ~k2,µ2

hν~k2
+....

)

=
∑
n ~k1,µ1

∑
n ~k1,µ1

...e
−β
(
n ~k1,µ1

hν~k1

)
e
−β
(
n ~k2,µ2

hν~k2

)
...

= Π~k,µ
Z~k,µ (8.55)

where

Z~k,µ =

∞∑
n~k,µ=0

e
−βn~k,µhν~k

=
∞∑

n~k,µ=0

(
e−βhν~k

)n~k,µ
=

1

1− e−βhν~k
(8.56)

For a given ~k, for each polarisation µ = 1, 2, the partition function gives the same value. Since the total
partition function involves products od partition functions corresponding to different ~k and µ, it follows
that

Z = Π~k,µ

1

1− e−βhν~k

= Π~k

(
1

1− e−βhν~k

)2

(8.57)

where for each ~k, the product of the partition functions for the two polarisation states is simply equal to
the square of the partition function for any one polarisation.

At this point, we need to compute the Helmholtz function for the system, from which all equilibrium
properties follow. This involves computing the logarithm of the partition function

lnZ = −2
∑
~k

ln
(

1− e−βhν~k
)

(8.58)
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It is instructive, however, to directly compute the mean energy of the system through the partition function
(eqn.(4.35))

E = − ∂

∂β
lnZ

= 2
∑
~k

hν~ke
−βhν~k

1− e−βhν~k

= 2
∑
~k

hν~k
eβhν~k − 1

(8.59)

The above equation has a simple interpretation: the mean energy of a system of electromagnetic fileds in
equilibrium is the sum over mean energies corresponding to different modes ~k. The factor of two arises
because of photon spin which has two states, and the energy is independent of spin. At this point, we need
to compute the sum over modes ~k. The mean energy associated with any mode depends on the frequency
of the mode. Then, it is natural to convert the sum over modes to sum over frequencies. Let us define a
function g(ν), termed ‘density of states’, as the number of modes lying in frequency range ν and ν + dν
per unit frequency range. Further, let N(ν) be the total number of modes upto frequency ν. Then

N(ν) =

∫ ν

0
dνg(ν) (8.60)

Then, the number of modes in frequency range ν and ν + dν is

dN(ν) = g(ν)dν (8.61)

The total number of modes upto frequency ν is given by the number of sets of integers l,m, n which satisfy
the inequality

|k| ≤ 2π

c
ν (8.62)

where ~k is given by eqn.(8.13) Then, the number of such modes is

N(ν) = 2
∑
l,m,n

∆l∆m∆n (8.63)

where ∆l = ∆m = ∆n = 1 and the values of l,m, n are subject to constraint (8.62). Let λ = c/ν. This is
the wavelength upto which the total number of modes is to be computed. The number of modes can be
written as

N(ν) = 2

(
L

λ

)3 ∑
l,m,n

(
λ∆l

L

)(
λ∆m

L

)(
λ∆n

L

)

= 2V
ν3

c3

∑
α,β,γ

∆α∆β∆γ (8.64)

where α = λl/L, β = λm/L and γ = λn/L. So long as λ << L, we can approximate discrete changes in
α, β, γ by continuous changes. Assuming this to be true, we get

N(ν) = 2V
ν3

c3

∫
dαdβdγ (8.65)

The constraint (8.62) translates α2 + β2 + γ2 ≤ 1. Then, the integral over α, β, γ is just the volume of a
unit sphere, 4π/3. This gives

N(ν) =
8πV

3c3
ν3 (8.66)
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Then, the density of states is

g(ν) =
dN(ν)

dν

=
8πV

c3
ν2 (8.67)

The sum over modes can now be replaced by an integral over ν

2
∑
~k

f(ν) −→
∫ ∞

0
dνg(ν)f(ν) (8.68)

for any function f(ν) of frequency, assuming the integral converges.

We can now compute the mean energy of electromagnetic system at temperature T

E = 2
∑
~k

hν~k
eβhν~k − 1

=
8πV h

c3

∫ ∞
0

dν

(
ν3

eβhν − 1

)
(8.69)

Since this energy depends on the volume confining the electromagnetic radiation, it is more useful to
study the energy density

U =
E

V

=
8πh

c3

∫ ∞
0

dν

(
ν3

eβhν − 1

)
(8.70)

Let us analyse the integrand. Equation(8.70) tells us that the energy of electromagnetic radiation at
temperature T is spread over all frequencies, with the energy (density) in the range ν and ν + dν given by

U(ν)dν =
8πh

c3

(
ν3

eβhν − 1

)
dν (8.71)

The energy distribution function U(ν) describes the famous Planck distribution.

Figure 8.1: The Planck distribution

The energy peaks at a specific frequency, which corresponds to the maximum of the function U(ν).
This frequency νmax satisfies

hνmax ' 2.82kBT (8.72)
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Equivalently, the wavelength corresponding to maximum energy is given by

λmax =
hc

2.82 T
(8.73)

As the temperature changes, the position of the peak of the curve shifts. With increase in temperature,
the peak shifts to higher frequency/lower wavelength.

It is instructive to take the classical limit of equation (8.71). This is obtained in the limit h → 0. In
this limit, we can approximate the denominator of the integrand as

eβhν − 1 ' βhν (8.74)

Substituting in eqn.(8.71), we get the classical limit

U(ν)dν → 8π

c3
ν2dν kBT (8.75)

We see from eqn.(8.67) that we can write the above eequation in the form

E(ν)dν = g(ν)dν kBT (8.76)

This equation has a simple interpretation: Each mode has the same energy, kBT , and the total energy
in frequency range ν and ν + dν is given by the above expression. This is just what we had observed in
eqn.(8.44) when we had attempted to use a classical description of electromagnetic phenomena.

How do we verify eqn.(8.71)? To verify, we need to do a spectral analysis of the electromagnetic energy.
A physical quantity direcly related to energy density and more accessible experimentally is the intensity
of radiation. In electrodynamics, the physical quantity representing intensity of electromagnetic radiation
is the Poynting vector

~S = ε0c
2 ~E × ~B (8.77)

A fourier decomposition similar to (8.18) gives

~S =
∑
~k

~S~k (8.78)

where

~S~k = ε0c
2 ~E~k × ~B~k

= ε0c
2
∣∣∣ ~E~k∣∣∣ ∣∣∣ ~B~k∣∣∣ k̂

= ε0c ~E
2
~k
k̂ (8.79)

where k̂ is a unit vector along ~k. The energy density associated with mode ~k is

U~k =
ε0
2
~E2
~k

+
1

2µ0

~B2
~k

= ε0 ~E
2
~k

(8.80)

Clearly, the intensity of radiation corresponding to a given ~k is proportional to the energy density corre-
sponding to that ~k ∣∣∣~S~k∣∣∣ = c U~k (8.81)

Say, we have an object at temperature T which is emitting electromagnetic radiation from its surface.
Let us ask: how much electromagnetic energy per unit area per unit time does it emit from its surface in
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frequency range ν and ν + dν? This is the same as the intensity of radiation emitted by the object. The
flux of radiation through the surface corresponding to mode ~k is given by

Φ~k = ~S~k · n̂

=
∣∣∣~S~k∣∣∣ cos θ (8.82)

where n̂ is a unit normal to the surface at the point from which the radiation is emitted

Figure 8.2: Radiation flux for mode ~k

To compute the flux corresponding to frequency ν, we need to integrate the above expression over half

the solid angle of 4π, for
∣∣∣~k∣∣∣ = 2πν/c. This is given by

Φν =

∣∣∣~S~k∣∣∣
4π

∫ 2π

0
dφ

∫ π/2

0
dθ sin θ cos θ

=
1

4

∣∣∣~S~k∣∣∣
=

c

4
U~k (8.83)

Then the intensity of radiation in frequency range ν and ν + dν is

I(ν)dν =
c

4
U(ν)dν (8.84)

Clearly, the intensity of radiation is a direct measure of the energy density. Let us now compute the total
intensity emitted from the surface of the object over the entire spectrum. This is obtained by integrating
the above expression over all frequencies

I =

∫ ∞
0

dνI(ν)

=
c

4

(
8πh

c3

)∫ ∞
0

dν

(
ν3

eβhν − 1

)
(8.85)

Let βhν = x. Then

I =
c

4

(
8πh

c3

)
1

β4h4

∫ ∞
0

dx
x3

ex − 1
(8.86)
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The integral over x can be computed as an infinite series

J =

∫ ∞
0

dx
x3

ex − 1

=

∫ ∞
0

dx
x3e−x

1− e−x

=

∫ ∞
0

dx x3e−x
∞∑
n=0

e−nx

=
∞∑
n=0

∫ ∞
0

dx x3e−(n+1)x

=

∞∑
n=1

∫ ∞
0

dx x3e−nx

=
∞∑
n=1

1

n4

∫ ∞
0

dt t3e−t

=

∞∑
n=1

1

n4
Γ(4)

= 6 ζ(4)

=
π4

15
(8.87)

where ζ is the Riemann Zeta function. Substituting the in intensity expression, we finally get

I =
c

4

(
8πh

c3

)
1

β4h4

π4

15

= σT 4 (8.88)

where

σ =
2π5k4

B

15h3c2
(8.89)

Equation(8.88) is known as Stefan’s Law. The constant σ is Stefan’s constant and is numerically equal to
(approximately) 5.67 × 10−8W/m2/K4. Given eqns.(8.88) and (8.84), we can compute the total energy
density oif electromagnetic radiation

U =

(
4

c

)
σT 4 (8.90)

Since photons carry momentum, radiation exerts pressure on surfaces which absorb/reflect it. Let us
compute the radiation pressure exerted on a perfectly absorbing/perfectly reflecting surface. We start with
the relation between energy and momentum of a photon. Given a photon with energy E, the magnitude
of its momentum is given by

|~p| = E

c
(8.91)

Then, it follows that a mode corresponding to propagation vector ~k is associated with a momentum density
given by

~P~k =
U~k
c
k̂

=
1

c2
~S~k (8.92)

where U~k is the energy density associated with this mode and ~S~k is the corresponding Poynting vector.
Now, let us consider a surface on which this mode is incident. Let us assume that this surface perfectly
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absorbs all the radiation falling on it. The momentum flowing per unit time per unit area across a surface
perpendicular to ~k equals c ~P~k = ~S~k/c (since the momentum is flowing with speed c). Then, if θ is the

angle between the normal to the surface and the propagation vector ~k, the magnitude of the momentum

absorbed by the surface per unit time per unit area equals (1/c)~S~k · k̂ = (1/c)
∣∣∣~S~k∣∣∣ cos θ = U~k cos θ. The

pressure exerted on the surface due to this mode is the normal component of this momentum flow per unit
time per unit area, and is given by

P~k = U~k cos θ × cos θ

= U~k cos2 θ (8.93)

Had the surface been perfectly reflecting, the pressure would be twice this much. The total pressure exerted

on the surface due to modes with the same magnitude
∣∣∣~k∣∣∣ is obtained by integrating the above expression

over half a solid angle

P|~k| =
1

4π

∫ 2π

0
dφ

∫ π/2

0
dθ sin θP~k

=
1

6
U~k (8.94)

Then, the pressure experienced by the surface in the frequency range ν and ν + dν is

Pabs(ν)dν =
1

6
U(ν)dν (8.95)

The total pressure due to all the frequencies is then

Pabs =
1

6
U (8.96)

where U is the total energy density. For a perfectly reflecting surface, the pressure is twice this much

Pref =
1

3
U (8.97)

For radiation in thermal equilibrium, it follows from (8.90) that

Pabs =
2

3c
σT 4 (8.98)

and

Pref =
4

3c
σT 4 (8.99)

8.4 Radiation Thermodynamics

Given radiation in equilibrium, what is the intrinsic pressure due to radiation? Is it the pressure measured
by a perfectly absorbing or a perfectly reflecting surface? To investigate this, we need to compute the
equation of state of the system. As usual, this is obtained from the Helmholtz function, (4.50)

F = −kBT lnZ

= kBT × 2
∑
~k

ln
(

1− e−βhν~k
)

= kBT

∫ ∞
0

dνg(ν) ln
(

1− e−βhν
)

= kBT
8πV

c3

∫ ∞
0

dνν2 ln
(

1− e−βhν
)

= kBT
8πV

c3

(kBT )3

h3

∫ ∞
0

dxx2 ln
(
1− e−x

)
(8.100)
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On integration by parts, this reduces to

F = −kBT
8πV

3c3

(kBT )3

h3

∫ ∞
0

dx
x3e−x

1− e−x
(8.101)

The integral has been computed before, and equals π4/15. Then

F = −kBT
8πV

3c3

(kBT )3

h3
× π4

15

= −4σ

3c
V T 4 (8.102)

The pressure of the system is

P = −
(
∂F

∂V

)
T

=
4σ

3c
T 4

=
1

3
U (8.103)

This is the pressure experienced by a perfectly reflecting surface. We can also obtain an expression for the
entropy of the system

S = −
(
∂F

∂T

)
V

=
16σ

3c
V T 3 (8.104)

Given the form of the Helmholtz function in (8.102), it is clear that it does not depend on the number
of photons. This is not surprising, since the number of photons is not conserved, unlike the number of
atoms/molecules in equilibrium with an environment. This is because photons can be absorbed and emitted
in arbitrary numbers by atoms/molecules/charged particles with which they are in equilibrium. Then, it
follows that the chemical potential of a system of photons in equilibrium is zero, since it is a measure of
variation in F due to a variation in particle number. Then, for a system of photons, the canonical and
grand canonical distributions are in fact equivalent.



Chapter 9

Quantum Perfect Gases

9.1 Quantum Indistinguishability

In section (5.4), we applied quantum mechanics to rotational and vibrational degrees of freedom of
molecules, but treated translational degrees of freedom as classical. The justification is as follows: even
though in principle all degrees of freedom are quantum mechanical and lead to discreteness of the energy
spectrum, however, the ability of experiments to resolve this discreteness depends on the temperature. If
the typical energy spacing of the spectrum is of the order ∆E, unless temperature is such that kBT . ∆E,
this discreteness is not thermodynamically resolvable (say, through the specific heat of the system). For
translational degrees of freedom, the energy spacing is of the order ∆E ∼ ~2/(2mV 2/3) where V is the
volume to which a particle/atom/molecule is constrained (this comes from treating the system as a ‘par-
ticle in a box’). For a hydrogen atom confined to a volume V ∼ 1m3, this corresponds to a characteristic
temperature of order T = ∆E/kB ∼ 10−17 ◦K which is too low to be attained in realistic physical situ-
ations. Therefore, discreteness induced due to translational degrees is not resolvable. However, quantum
effects can creep in due to a fundamentally different reson. Given a high enough density (or low enough
temperature), quantum indistinguishability becomes important. If we view particles as fuzzy wavefunc-
tions moving around in space, if there is appreciable overlap in these wavefunctions, it becomes impossible,
even in principle, to distinguish between structurally identical particles (by structurally identical, we mean
particles with the same charge, mass, spin, or any other internal degrees of freedom). We can estimate
the density/temperature at which this indistinguishability is important by comparing the thermal de-
Broglie wavelength of particles to their mean spacing. A reasonable estimate is given by the condition
λ(T ) & (V/N)1/3 where λ(T ) = ~/

√
2mπkBT . At a given temperature (which fixed λ(T )), a high enough

density can result in appreciable wavefunction overlap. Conversely, at a given density, a low enough tem-
perature can result in the same. To understand quantum indistinguishability, let us consider an experiment
involving scaterring of two particles, say, electrons. Two emitters emit these particles, which we label emit-
ters A and B. The particles are allowed to interact, after which they are detected by detectors labelled C
and D

105
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Interaction Region

Figure 9.1: Particle Scattering

Even though the particles are intrinsically indistinguishable, we can still label them as ‘particle A’ and
‘particle B’, based on their initial positions (confined to the corresponding emitter) at the time of emission.
Now, we ask the question: which particle has been detected by detector C and which has been detected
by detector D? Since the particles are intrinsically identical, there seems to be no way of telling which
is which. However, if the particles are described by classicla Physics, we can, in principle, tell. This is
because they have well-defined trajectories, and they could have landed in the corresponding detectors in
two alternative ways, only one of the alternatives having been taken, determined uniquely by their initial
positions and velocities
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Figure 9.2: Alternative trajectories

Then, clasically, all particles are distinct, even though they may be structurally identical. However,
since there are no trakectories in a quantum mechanical description, this distinguishability is lost. The
particles, at the time of emission, can be assigned wavefunctions localised around detectors A and B. As
the wavefunctions evolve and overlap, the particles interact. When a detection is made at detectors C
and D, a particle each is detected at C and D. This measurment corresponds to a wavefunction collapse,
which is not deterministic in quantum mechanics. As a result, given the final locations of the particles,
it is impossible, even in principle, to extract information about which particle originated at A and which
originated at B. This absence of trajectories and collapse of the wavefunction makes structurally identical
particles truly identical in a quantum mechanical description. It in fact turns out that the vector space
of states of two identical particles is completely different from that of two distinct particles. The former
vector space has a smaller dimension, and can be ‘carved out’ of the vector space of two distinct particles.
To see how this works out, say we detect a particle at point x1 and another at point x2. If these are
distinct particles, we can label quantum states of thes particles as an ordered pair, the first slot reserved
for particle of type a and the second for particle of type b. Then, given this measurement, the two possible
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states corresponding to this measurment are |x1, x2〉 and |x2, x1〉. To decide which of these is the correct
state, we will need to measure some intrinsic property that distinguishes these particles, a measurment of
which will decide between these two states. However, if the particles are structurlly identical, there is no
way to distinguishing between these alternatives. Then, such a measurement results in a state which is
desribed by a pair of numbers x1 ans x2 that is not ordered. Let us label this state as |ψ(x1, x2)〉. This
state can be written as a superposition of states |x1, x2〉 and |x2, x1〉

|ψ(x1, x2)〉 = α |x1, x2〉+ β |x2, x1〉 (9.1)

Since the pair (x1, x2) is not ordered, the states |ψ(x1, x2)〉 and |ψ(x2, x1)〉 are physically the same. Since
physically same states can still differ by a phase, it follows that

|ψ(x2, x1)〉 = γ |ψ(x1, x2)〉 (9.2)

where γ is a phase. Using eqn.(9.1), it follows that

α |x2, x1〉+ β |x1, x2〉 = γα |x1, x2〉+ γβ |x2, x1〉 (9.3)

form which we get

γα = β

γβ = α (9.4)

which is satisfied if γ2 = 1, that is, γ = ±1. If we choose γ = +1, we get the following (normalised) state,
which is symmetric under x1 ↔ x2

|ψ(x1, x2)〉S =
1√
2

(|x1, x2〉+ |x2, x1〉) (9.5)

On the other hand, the choice γ = −1 gives us a state antisymmetric under x1 ↔ x2

|ψ(x1, x2)〉A =
1√
2

(|x1, x2〉 − |x2, x1〉) (9.6)

Clearly, |ψ(x2, x1)〉S = + |ψ(x1, x2)〉S and |ψ(x2, x1)〉A = − |ψ(x1, x2)〉S . In general, if a measurement of
an observable yields a pair of numbers (eigenvalues) a and b for two identical particles, the resulting state
is either a symmetric or antisymmetric superposition

|ψ(α, β)〉S =
1√
2

(|α, β〉+ |β, α〉) Symmetric State

|ψ(α, β)〉A =
1√
2

(|α, β〉 − |β, α〉) Antisymmetric State (9.7)

What decides if a species of particles ‘chooses’ symmetric or antisymmetric states? It turns out that all
particles with integer intrinsic spin have symmetric states and those with half-integer spins have antisym-
metric states. This is a consequence of the celebrated Spin statistics theorem which is a natural consequence
of describing nature using both quantum mechanics and relativity. A discussion of this theorem is way
beyond the scope of these lectures....

Particles with symmetric states are called Bosons and those with antisymmetric states are called
Fermions. Composites of elementary particles (atoms, molecules, etc.) act as bosons or Fermions depending
on their composite spin. electrons, protons and netrons are Fermions (they are spin-1/2 particles). A
hydrogen atom, though, is a Boson, since it consists of two Fermionic particles (giving composite integer
spin).

The symmetriszation/antisymmetrization can be extended to a system of N particles which is such that
one particle is in state |α1〉, another in state |α2〉,... If the system is Bosonic/Fermionic, the resulting state
is a completely symmetric/antisymmetric superposition of distinct particle states of the form |α1, α2, .., αN 〉

|ψ(α1, α2, .., αN )〉S =
1√
N !

[|α1, α2, .., αN 〉+ permutations] Bosons

(9.8)
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|ψ(α1, α2, .., αN )〉A =
1√
N !

[|α1, α2, .., αN 〉+ (−1)ppermutations] Fermions

(9.9)

where p is the number of permutations taking a term in the superposition to the first term. For example,
given three particles in states |α1〉 , |α2〉 , |α3〉,

|ψ(α1, α2, α3)〉S =
1√
3!

[|α1, α2α3〉+ |α2, α1α3〉+ |α1, α3, α2〉+ |α3, α2, α1〉 (9.10)

+ |α3, α1, α2〉+ |α2, α3, α1〉]

|ψ(α1, α2, α3)〉A =
1√
3!

[|α1, α2, α3〉 − |α2, α1, α3〉 − |α1, α3, α2〉 − |α3, α2, α1〉 (9.11)

+ |α3, α1, α2〉+ |α2, α3, α1〉]

The symmetry/antisymmetry of quantum states has remarkable observable implications. Say, we have
a system of N particles in a state in which we know that one particle is in state |α1〉, another in |α2〉,..., one
in state |αN 〉. This state can be prepared, for instance, by measuring some observable A for the N particle
system, which has eigenvalues α1, α2, ... We can visualise the measurement process measuring the value of A
for each particle, and the detector detecting the value of A for the particles, recording numbers α1, α2, ..αN .
Say, we do not know if the particles are identical or distince, or if they are identical, whether they are
Bosons or Fermions. To determine this, we measure another observable B which has eigenvalues β1, β2, .....
To do this, we prepare an ensemble (collection) of identical states prepared through the measurement of A,
and measure B for each state. Each measurment will give a set of N number β1, β2, ...βN . We collect the
statistical data arising out of many such measurements on B, all carried out on the same quantum state.
After collecting this data, we count the number of times all the values of β were the same, and compute
the probability of this happening statistically. Let us analyze this probability assuming the particles are
Bosons/Fermions. If the particles are Fermions, this probability is zero, since it is impossible to measure
the same value of B for all the particles, since such a state would be manifestly symmetric. On the other
hand, if the particles are bosons, the symmetric state corresponding to all particles possessing value β for
B is simply

|φ〉S = |β, β, .., β〉 (9.12)

The probability amplitude that this happens is

〈φ| ψ(α1, .., αN )〉S =
1√
N !

[〈β, β, ..β| α1, α2, ..αN 〉+ permutations]

=
1√
N !

[〈β| α1〉 〈β| α2〉 .. 〈β| αN 〉+ permutations]

=
1√
N !
×N ! 〈β| α1〉 〈β| α2〉 .. 〈β| αN 〉

=
√
N ! 〈β| α1〉 .. 〈β| αN 〉 (9.13)

The probability of this happening is

PS(β) = |〈φ| ψ(α1, .., αN )〉S |
2

= N ! |〈β| α1〉|2 |〈β| α2〉|2 ... |〈β| αN 〉|2 (9.14)

Had these particles been all distinct, the measurement of A would have produced only one of the states in
the superposition in eqn.(9.8). Say, that state was |α1, α2, .., αN 〉. Then, a measurement of B would give
the state |β, β, .., β〉 with probability

P (β) = |〈β, β, .., β| α1, α2, ..αN 〉|2

= |〈β| α1〉|2 |〈β| α2〉|2 ... |〈β| αN 〉|2 (9.15)
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Then, it follows that

PS(β) = N ! P (β) (9.16)

That is, for a system of Bosons, the probability of measuring the same value of B for all the particles is N !
times the corresponding probability for a system of distinct particles. Therefore, Bosons have a tendency
to evolve to the same state, relative to distince particles. Of course, Fermions have a tendency to evolve
away from similar states. This is experimentally observable.

Quantum indistinguishability can have interesting consequences. Consider, for instance, two weakly
interacting identical spin-half particles in one-dimensional ‘box’ of length L (this is just a ‘toy’ example,
there can be no spin in one dimension). A single particle in the box has energy eigenstates |n〉 with
eigenvalues En = n2π2~2/2mL2. Therefore, if the particles were distinguishable, the eigenstates would
be of the form |n1, n2〉 with eigenvalues E(n1, n2) = (n2

1 + n2
2)π2~2/2mL2. Given that the particles are

spin-half, the ground state is the following anti-symmetric state

|E0〉 =
1√
2

( |1 ↑, 1 ↓〉 − |1 ↓, 1 ↑〉 ) (9.17)

with energy E0 = 2π2~2/2mL2. Here, ↑ and ↓ denote ‘up’ and ‘down’ spin states. The ground state of the
system has zero net spin. Now, let us say we tried to flip one of the spins such that they became parallel.
For definiteness, say we try to flip both spins up. The energy of the system does not depend on the spin
of the particles. However, if the spins are parallel, the system cannot be in the ground state, since it will
not be possible to have an antisymmetric state. The lowest energy of the system with both spins parallel
is that corresponding to the antisymmetric state

|E1〉 =
1√
2

( |1 ↑, 2 ↑〉 − |2 ↑, 1 ↑〉 ) (9.18)

with energy E1 = 5π2~2/2mL2. Then, making the spins parallel takes energy, even though the spins are
not interacting. A similar effect is responsible for ferromagnetism, where the interaction between magnetic
moments of atoms is too weak to account for the high Curie temperature TC . The ‘effective interaction’
between neighbouring spins, arising because of the antisymmetry electron states, is responsible for the high
value of TC .

What are the statistical consequences of identical nature of particles for a system of particles in thermal
equilibrium? Since all the statistical properties can be deduced from the partition function, we must focus
on the difference that identical nature of particles makes to the partition function. As a simple exam-
ple, consider a weakly interacting two-particle system, each particle having three energy states |ε1〉 , |ε2〉
and |ε3〉. If the particles were distinct, the possible quantum microstates would be the energy eigen-
states |ε1, ε1〉 , |ε2, ε2〉 , |ε3, ε3〉 , |ε1, ε2〉 , |ε2, ε1〉 , |ε1, ε3〉 , |ε3, ε1〉 , |ε2, ε3〉 and |ε3, ε2〉. in thermal equilibrium at
temperature T , these would result in the partition function

ZD = e−2βε1 + e−2βε2 + e−2βε3 + 2e−β(ε1+ε2) + 2e−β(ε2+ε3) + 2e−β(ε1+ε3)

=
(
e−βε1 + e−βε2 + e−βε3

)2
(9.19)

where the subscript ‘D′ is for ‘distinct’. Clearly, the partition function is the square of the single-particle
partition function, since the energy of the system is additive and a microstate of the system is a specifi-
cation of the microstate of each individual particle. If the particles are Bosons, there will be six possible
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(symmetric) microstates

|ψ(ε1, ε1)〉S = |ε1, ε1〉
|ψ(ε2, ε2)〉S = |ε2, ε2〉
|ψ(ε3, ε3)〉S = |ε3, ε3〉

|ψ(ε1, ε2)〉S =
1√
2

(|ε1, ε2〉+ |ε2, ε1〉)

|ψ(ε2, ε3)〉S =
1√
2

(|ε2, ε3〉+ |ε3, ε2〉)

|ψ(ε1, ε3)〉S =
1√
2

(|ε1, ε3〉+ |ε3, ε1〉) (9.20)

giving the partition function

ZS = e−2βε1 + e−2βε2 + e−2βε3 + e−β(ε1+ε2) + e−β(ε2+ε3) + e−β(ε1+ε3) (9.21)

If the particles are Fermions, there will be only three (antisymmetric) microstates

|ψ(ε1, ε2)〉A =
1√
2

(|ε1, ε2〉 − |ε2, ε1〉)

|ψ(ε2, ε3)〉A =
1√
2

(|ε2, ε3〉 − |ε3, ε2〉)

|ψ(ε1, ε3)〉A =
1√
2

(|ε1, ε3〉 − |ε3, ε1〉) (9.22)

giving rise to the partition function

ZA = e−β(ε1+ε2) + e−β(ε2+ε3) + e−β(ε1+ε3) (9.23)

Clearly, the Bosonic and Fermionic partition functions are not factorizable. This is because even though
the energy is additive, the particles are not distinct.

9.2 Quantum Perfect Gases

A ‘perfect’ gas is a system of weakly interacting identical particles in equilibrium. In the classical limit,
this system is often called an ‘Ideal gas’. We are interested in a quantum mechanical description of this
system. Whether classical physics is a good approximation depends on the relative values of the thermal
deBroglie wavelength λ(T ) and the mean spacing between particles, given by (V/N)1/3. The classical limit
of this system is given by the condition

λ(T ) <<
1

ρ1/3
(9.24)

where ρ = N/V is the number density. As discussed, in this limit, there is expected to be little overlap
between wavefunctions of different particles and therefore they can in principle be distinguished by tracking
their trajectories. At a given temperarure, if the density of the system is low enough, this condition is
satisfied. Conversely, at a given density, a low enough temperature can also lead to this condition. We are
interested in primarily two situations: (a) one, in which the condition (9.24) is just violated, such that first
order quantum corrections are importanrt and (b) the complement of this condition, when the thermal
deBroglie wavelength is much larger than the mean particle spacing. Either way, we need to start with
the microstates of the system and compute the partition function. A convenient way to label microstates
is to use the so-called ‘occupation number representation’. First, we construct the ‘single particle states’
which are energy eigenstates of a single particle confined to the given volume (occupied by the system of
particles). These are just energy states corresponding to a ‘particle in a box’, where we assume that the
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volume is in the shape of a cubical box of side L and volume V = L3. The energy eigenstates |εα〉 are
labelled by three integers nx, ny, nz such that the energy of the particle in this state is

εα =
π2~2

2mV 2/3

(
n2
x + n2

y + n2
z

)
(9.25)

where nx, ny, nz are whole numbers 1, 2, 3, ..... Even though the spectrum is discrete, this discreteness is
not important, since typical temperatures cannot resolve it (the natural temperature scale associated with
this discreteness, as discussed, before, is far lower than experimentally accessible temperatures). However,
as we shall see, there is an important exception where this discreteness is fundamentally important. since
the particles are weakly interacting, their energies are additive and therefore the energy eigenstates of the
system are symmetric/antisymmetric superpositions of ‘direct product’ states such as |ε1, ε2, .., εN 〉 which
is a state in which the first particle is in energy state |ε1〉, the second particle in state |ε2〉.... and the
N th particle in state |εN 〉. However, in this superposition, since a given energy term εi appears the same
number of times in each term of the superposition (only the particle that has that energy term is different
in the superposition), therefore, one can lable these states by jyst specifying how many particles occupy
a given single particle state. In this representation (the occupation number representation), such a state
is replaced by the ordered set (nα1 , nα2 , nα3 , ...., nαk , .....) where each slot is reserved for a single particle
state and the entry in the slot gives the number of particles in that state. since there is an infinite number
of single particle states, this is an infinitely long list. However, the occupation numbers nα corresponding
to singla particle states |εα〉 are subject to the constaraint∑

α

nα = N (9.26)

The microstates of the system are all such possible states, specified by a collection of occupation numbers
{nα} of single particle states. The energy of such a microstate is given by

E{nα} =
∑
α

nαεα (9.27)

The partition function of the system is

Z =
∑
{nα}

e−βE{nα}

=
∑
{nα}

e−β
∑
α nαεα (9.28)

Had the constraint (9.26) not been there, this partition function would have factorised into a product
of partition functions for single particle states. The number constraint (9.26) makes the computation
of the partition function difficult. To get around the problem, we use the Grand Canonical distribution
corresponding to particles occupying volume V at temperature T and chemical potential µ, such that the
mean number of particles in this distribution equals N . The Grand partition function is

ZG =
∑
{nα}

e−βE{nα}+βµN{nα}

=
∑
{nα}

e−β
∑
α nαεα+βµ

∑
α nα

=
∑
{nα}

e−β
∑
α nα(εα−µ) (9.29)

where N{nα} =
∑

α nα. Since there is no restriction on N{nα} in the Grand canonical distribution, therefore,
the occupation numbers {nα} are unconstrained. This allows us to factorise the partition function

ZG = ΠαZα (9.30)
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where
Zα =

∑
nα

e−βnα(εα−µ) (9.31)

For Bosons, the occupation number for a given single particle state can vary from zero to infinity. For
Fermions, it can only be one or zero (apart from a multiplicative spin factor which we will take into account
separately). The Boson,

ZBα =
∞∑

nα=0

[
e−β(εα−µ)

]nα
=

1

1− e−β(εα−µ)
(9.32)

For Fermions,

ZFα =
1∑

nα=0

[
e−β(εα−µ)

]nα
= 1 + e−β(εα−µ) (9.33)

The Landau Potential for the system is given by

G = −kBT lnZG

= −kBT
∑
α

lnZα (9.34)

It is useful the write the expression for G for both Bosons and Fermions together

G = ± 1

β

∑
α

ln
(

1∓ e−β(εα−µ)
)

(9.35)

where the upper sign is for Bosons and the lower sign for Fermions. The mean number of particles of the
system (which is equl to N , given the equivalence of the canonical and the grand canonical distributions
in the thermodynamoc limit) is give by

N = −
(
∂G
∂µ

)
T,V

=
∑
α

1

eβ(εα−µ) ∓ 1
(9.36)

Equation (9.36) is to be used to determine the chemical potential of the system as a function of temperature
and density. We can compute the equation of state by (partially) differentiating G with respect to volume,
but it is useful to take a brief detour and deduce a couple of useful results, one relating the chemical
potential of a system to change in energy of the system as a result of a change in the number of particles,
and the other relating the Landau potential directly to the pressure of the system.

We can always visualise the entropy of a system as a function of its energy, volume and number
of particles, S = S(E, V,N). Let us consider a change in the entropy of the system as a result of an
infinitesimal change in the energy, number of particles and volume of the system This change is

dS =

(
∂S

∂E

)
V,N

dE +

(
∂S

∂V

)
E,N

dV +

(
∂S

∂N

)
E,V

=
1

T
dE +

P

T
dV − µ

T
dN (9.37)

where we have used eqn.(7.56) for the chemical potential. Clearly, we can always change the energy of the
system and the number of particles together, such that the entropy and the volume of the system do not
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change. In such a situation, given dS = dV = 0, the change in energy and the number of particles are
related by

dE = µdN (9.38)

which implies

µ =

(
∂E

∂N

)
S,V

(9.39)

since the change involves keeping volume and entropy fixed. This is the expression we wanted for the
chemical potential. Next, we visualise the energy of the system as a function of S, V and N , all extensive
quantities. Since energy is also extensive, this implies

E(λS, λV, λN) = λE(S, V,N) (9.40)

where λ is a scaling factor. Differentiating the above equation with respect to λ and taking λ = 1 after
differentiation, we get (

∂E

∂S

)
N,V

S +

(
∂E

∂V

)
S,N

V +

(
∂E

∂N

)
S,V

N = E (9.41)

Given equation(2.6), it follows that (
∂E

∂S

)
N,V

= T (9.42)

Furthur, the derivative of E with respect to N is µ. We now need to interpret the significance of the
derivative of energy with respect to volume (at fixed entropy and number of particles). To do this we go
back to (9.37), this time keeping entropy and the number of particles fixed. This gives us(

∂E

∂V

)
S,N

= −P (9.43)

Then, eqn.(9.41) reduces to
TS − PV + µN = E (9.44)

Since G = E − TS − µN , therefore we get
G = −PV (9.45)

Then, once the Landau potential is computed, it immediately gives the eqiation of state (after expressing
µ as a function of temperature and density of the system through (9.36)). Equation (9.36) can be written
as

N =
∑
α

nα (9.46)

where

nα =
1

eβ(εα−µ) ∓ 1
(9.47)

can be interpreted as the mean number of particles occupying the single particle state |εα〉.
If we wish to compute first (or higher order) quantum effects, we need a ‘small parameter’ in terms

of which we can expand about the classical results. To identify the samll parameter, we need to cast the
condition (9.24) as a condition on the chemical potential, through which the density appears implicitly. At
a given temperature, the classical limit corresponds to low density. If there are very few particles occupying
a given volume, given the infinite number of single particle states, it seems reasonable that most of the
microstates will correspond to particles occupying distinct single particle states. Assuming this to be true,
the mean number of particles per single particle state will be very small. Then, it seems reasonable that at
sufficiently low densities, the mean occupation numbers nα << 1. To test this conjecture, we reduce this
to a condition on the chemical potential. Since this condition must be true for all |α〉, it follows that in the
classical limit, e−βµ >> 1. Given eqn.(7.56), it is clear that the chemical potential for a classical system
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of particles is negative, since entropy can only increase due to an increase in the number of particles (at
fixed energy and volume). Then, the exponent in e−βµ is positive. This condition can also be written as

eβµ << 1 (9.48)

which also identifies eβµ as the ‘small parameter’ in terms of quantum corrections to physical quantities
can be computed on expanding about the classical result. To check it this condition is physically resonable,
we observe that in this approximation,

nα ' e−β(εα−µ) (9.49)

Substituting this in the expression for the Landau potential (eqn.9.35), we get

G ' ± 1

β

∑
α

ln (1∓ nα)

' − 1

β

∑
α

nα

= −NkBT (9.50)

where we have used ln(1 ∓ nα) ' ∓nα. Using eqn.(9.45), we get the classical equation of state, which
justifies eqn.(9.48) as the condition for the classical limit.

We now get back to computing the Landau potential (eqn.(9.35)) and the chemical potential (9.36).
As discussed, since the quantum discreteness in single particle states is not important, we can relace the
sum over single particle states by integrals. The sum is over quantum numbers nx, ny, nz appearing in the
energy eigenvalue expression (9.25), subject to constraint

n2
x + n2

y + n2
z =

(
2mV 2/3

π2~2

)
ε (9.51)

which resembles the equation of a sphere of radius

r =

√(
2mV 2/3

π2~2

)
ε (9.52)

We replace the sum by integrals, and recognizing that the summands in eqn.(9.35) and (9.36) depend only
on energy (and therefore sum of squares of nx, ny, nz), we get, by converting the integral into a spherical
integral ∑

nx,ny ,nz

f(ε) ←→
∫
dnxdnydnzf(ε)

=
1

8
4π

∫ ∞
0

drr2f(ε)

=
4π
√

2V m3/2

(2π~)3

∫ ∞
0

dε ε1/2f(ε) (9.53)

We now introduce a factor recognising the intrinsic spin of the particles. If the spin is s, there are 2s+ 1
spin states, increasing the single particle states by this factor. Finally, we can write∑

nx,ny ,nz

f(ε)←→
∫ ∞

0
dε g(ε)f(ε) (9.54)

where g(ε) is the ‘density of states’ (number of single particle states in the energy interval ε and ε+ dε per
unit interval), given by

g(ε) =

(
4π
√

2(2s+ 1)V m3/2

(2π~)3

)
ε1/2 (9.55)
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9.2.1 Weakly Degenerate gas

We now compute the first order quantum corrections to the Landau potential and the chemical potential,
and consequently obtain the first order quantum correction to the equation of state. We take eβµ as a
small parameter in terms of which we can expand, retaining terms up to next to leading order. Up to this
order, the logarithm appearing in eqn.(9.35) can be approximated by

ln
(

1∓ e−β(εα−µ)
)
' ∓e−β(εα−µ) − 1

2
e−2β(εα−µ) (9.56)

Then, the Landau potential reduces to

G = −kBT
∑
α

e−β(εα−µ) ∓ kBT

2
e2βµ

∑
α

e−2βεα

= Gclass ∓
kBT

2
e2βµ

∑
α

e−2βεα (9.57)

where Gclass is the classical Landau potential, given by

Gclass = −kBTeβµ
∑
α

e−βεα

= −kBTeβµ
∫ ∞

0
dε g(ε)e−βε (9.58)

Also, ∑
α

e−2βεα =

∫ ∞
0

dε g(ε)e−2βε

(9.59)

In the integral, we change variable from ε to ε′ = 2ε. Since g(ε) ∝ ε1/2, we get∑
α

e−2βεα =

∫ ∞
0

dε′

2

g(ε′)

21/2
e−βε

′

=

(
1

2

)3/2 ∫ ∞
0

dε g(ε)e−βε (9.60)

where we have just replaced the (dummy) variable ε′ by ε. The epression for the Landau potential reduces
to

G = Gclass ∓ kBTe2βµ

(
1

2

)5/2 ∫ ∞
0

dε g(ε)e−βε (9.61)

Given eqn.(9.58), we can write this as

G = Gclass
[
1± eβµ

25/2

]
(9.62)

where

Gclass = −kBTeβµ
∫ ∞

0
dε g(ε)e−βε

= −kBTeβµ
(

4π
√

2(2s+ 1)V m3/2

(2π~)3

)∫ ∞
0

dε ε1/2e−βε

= −kBT (2s+ 1)V

λ3(T )
eβµ (9.63)
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where the integral has been computed using Gamma functions. Finally,

G = −kBT (2s+ 1)V

λ(T )3
eβµ

[
1± eβµ

25/2

]
= −kBT (2s+ 1)V

λ3(T )

[
eβµ ± e2βµ

25/2

]
(9.64)

The number of particles is constrained through

N = −
(
∂G
∂µ

)
T,V

=
(2s+ 1)V

λ(T )3

[
eβµ ± e2βµ

23/2

]
(9.65)

This equation is to be used to compute µ(T, ρ). Let eβµ = x. In terms of x, the Landau potential and
particle number equations reduce to

G = −kBT (2s+ 1)V

λ3(T )

[
x± x2

25/2

]
(9.66)

N =
(2s+ 1)V

λ3(T )

[
x± x2

23/2

]
(9.67)

It is assumed that x << 1. The equation for the number of particles can be written as

x± x2

23/2
=

Nλ3

(2s+ 1)V
(9.68)

Let α = Nλ3/(2s+ 1)V . Clearly, α << 1 since x << 1. Then, we can expand x in this small parameter.
To leading order, x = α (ignoring x2). Then, to next to leading order, x must be of the form

x = α+ λα2 (9.69)

where λ is to be determined. Substituting this in the equation for x (and retaining terms upto α2 only),
we get

α+ λα2 ± α2

23/2
= α (9.70)

which gives

λ = ∓ 1

23/2
(9.71)

such that

x = α
[
1∓ α

23/2

]
(9.72)

The chemical potential can now be obtained

µ

kBT
= lnx

' lnα+ ln
(

1∓ α

23/2

)
(9.73)

Then

µ ≈ kBT
[
logα∓ α

23/2

]
(9.74)
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This gives the chemical potential to first order. Substituting for x in the Landau potential, and retaining
terms upto order α2

G = −kBT (2s+ 1)V

λ3(T )

[
x± x2

25/2

]
(9.75)

= −kBT (2s+ 1)V

λ3(T )

[
α∓ α2

23/2
± α2

25/2

]
(9.76)

= −kBT (2s+ 1)V

λ3(T )

[
α∓ α2

(
1

23/2
− 1

25/2

)]
(9.77)

= −kBT (2s+ 1)V

λ3(T )
α
[
1∓ α

25/2

]
(9.78)

Substituting for α, we get

G = −NkBT
[
1∓ λ3(T )

25/2(2s+ 1)(V/N)

]
Given that G = −PV , we get the equation of state upto first order

PV = NkBT

[
1∓ λ3(T )

25/2(2s+ 1)(V/N)

]
(9.79)

In terms of temperature and (number) density, we get

P = ρkBT

[
1∓ λ3(T )

25/2(2s+ 1)
ρ

]
(9.80)

which shows that at a given temperature and density, a system of Bosons/Fermions will have a lower/higher
pressure compared with a classical system.

For completeness, let us also compute the first order quantum corrections to energy and entropy. To
calculate entropy, we strt with the original expression for G in terms of the chemical potential

G = −kBT (2s+ 1)V

λ3(T )

[
x± x2

25/2

]
where x = eµ/kBT . The entropy is given by

S = −
(
∂G
∂T

)
V,µ

The derivative will involve differentiation of λ(T ) and x = eµ/kBT w.r.t. T . Given that λ(T ) = 2π~/
√

2πmkBT ,
we get

S = −
(
∂G
∂T

)
V,µ

=
5

2

kB(2s+ 1)V

λ3

[
x± x2

25/2

]
− kB(2s+ 1)V

λ3

µ

kBT

[
x± x2

23/2

]
(9.81)

Substituting for x and µ (and retaining terms upto order α2), one finally gets

S = Scl ∓
NkB

4

λ3(T )

23/2(2s+ 1)
ρ (9.82)

where Scl is the classical ideal gas entropy. to calculate the mean energy of the system, it is easire to
calculate the change in mean energy relative to the classical value. We start with the expression

E = TS − PV + µN (9.83)
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The change in energy is (T and V are fixed)

∆E = T∆S − V∆P +N∆µ

= T∆S −∆(PV ) +N∆µ (9.84)

(9.85)

Since we have calculated G, S and µ, we have

∆S = ∓NkB
4

λ3

23/2(2s+ 1)
ρ

∆(PV ) = ∓NkBT
λ3

25/2(2s+ 1)
ρ

∆µ = ∓kBT
λ3

23/2(2s+ 1)
ρ (9.86)

Substituting, we get

∆E = T∆S −∆(PV ) +N∆µ (9.87)

= ∓NkBT
4

λ3(T )

23/2(2s+ 1)
ρ±NkBT

λ3(T )

25/2(2s+ 1)
ρ∓NkBT

λ3(T )

23/2(2s+ 1)
ρ

= ∓3

4
NkBT

λ3(T )

23/2(2s+ 1)
ρ (9.88)

Therefore

E = Ecl + ∆E

=
3

2
NkBT ∓

3

4
NkBT

λ3(T )

23/2(2s+ 1)
ρ

9.2.2 Strongle Degenerate Fermi gas

We now analyze a system of identical particles at the other extreme, when classical physics is a very poor
approximation. That is,

λ(T ) >>
1

ρ1/3
(9.89)

Let us first consider a system of Fermions. The Landau potential for the system is

G = − 1

β

∑
α

ln
(

1 + e−β(εα−µ)
)

(9.90)

The chemical potential is given by the constraint

N =
∑
α

nα

=
∑
α

1

eβ(εα−µ) + 1
(9.91)

As an extreme case of condition (9.89), let us see what happens if for a fixed density ρ, we take the limit
T ←→ 0. In this limit, let the chemical potential approach the limit µ0. It is easy to see from eqn.(9.91)
that as T −→ 0, the mean single particle state occupation number has the following behaviour

nα =

{
1 εα < µ0

0 εα > µ0
(9.92)
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This can be represented graphically as follows

Figure 9.3: Occupation number for Fermions at absolute zero

The interpretation of eqn.(9.92) is simple: At absolute zero, all single particle states upto energy
εF = µ0 are completely filled. In essence, the entire system is in a single quantum state: an antisymmetric
superposition of the ground state, first excited state,..so on. Clearly, the entropy of the system at absolute
zero is zero, since there is a single microstate at this temperature. The highest single particle state energy
εF is called Fermi energy. It can be computed using eqn.(9.91)

N =
∑
α

nα

=

∫
dεg(ε)n(ε)

=

∫ εF

0
dεg(ε)

=

(
4π
√

2(2s+ 1)V m3/2

(2π~)3

)∫ εF

0
dε ε1/2

=

(
4π
√

2(2s+ 1)V m3/2

(2π~)3

)
× 2

3
ε
3/2
F (9.93)

Inverting this gives the Fermi energy

εF =
(2π~)2

2m

(
3

4π(2s+ 1)

)2/3

ρ2/3 (9.94)

The fermi energy sets a natural temperature scale, the Fermi temperature

TF =
εF
kB

(9.95)

Since εF is also the chemical potential at absolute zero, we observe that µ0 > 0, which is interesting,
since at least for classical systems, we expect the chemical potential to be negative, as argued in section
9.2. Clearly, quantum mechanics does not respect that. To see that chemical potential of quantum systems
can be positive, it is most convenient to use the following expression for the chemical potential (eqn.(9.39))

µ =

(
∂E

∂N

)
S,V

(9.96)

We can interpret the above equation as follows: the chemical potential is the change in energy of a system
if one particle is added while keeping the entropy (and volume) unchanged. Let us consider a very small
quantum system of two particles with single particle states with (non-degenerate) energy 0, ε, 2ε, 3ε, 4ε, ....
Let the total energy of the system be 3ε. For Bosons, there are two microstates corresponding to this
energy, which, in the occupation number representation, are (1, 0, 1, 0, 0, 0, ..)B and (0, 1, 1, 0, 0, 0, ....)B.
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The entropy of the system is then SB = kB ln 2. If the system is Fermionic, there are once again two
microstates, (1, 0, 1, 0, 0, 0, ..)F and (0, 1, 1, 0, 0, 0, ....)F , again corresponding to entropy SF = kB ln 2. Let
us add one particle, without changing the energy. For Bosons, the number of microstates increases to
three: (2, 0, 1, 0, 0, 0, ....)B, (1, 1, 1, 0, 0, 0, .....)B and (0, 3, 0, 0, 0, 0, ....)B. This increases the entropy to S′ =
kB ln 3. For Fermions, there is only one three-particle microstate with total energy 3ε : (1, 1, 1, 0, 0, 0, .....)F
with entropy S′ = 0. Now we try to exchange energy with the system to bring the entropy back to its
original value, S = kB ln 2. For Bosons, this is accomplished by reducing the energy of the system by ε,
resulting in two microstates with total energy 2ε : (2, 0, 1, 0, 0, 0, ...)B and (1, 2, 0, 0, 0, 0, ...)B and entropy
S = kB ln 2. For Fermions, we cannot lower the energy (why?). The minimum energy we need to add is
2ε, resulting in two microstates with total energy 5ε : (1, 0, 1, 1, 0, 0, 0, ...)F and (1, 1, 0, 0, 1, 0, 0, ...)F with
entropy S = kB ln 2. Then, the chemical potential for the Bosonic system is µB = −ε and for the Fermionic
system µF = +2ε, which is positive.

A system of Fermions at absolute zero exerts a non-zero pressure. To see this, we compute the Landau
potential at absolute zero. In eqn.(9.90), as T −→ 0, the term e−β(εα−µ) is zero unless εα < µ0. For
εα > µ0, the term is zero and the logarithm is zero as well. Therefore, we need to sum over only those
single particle states with energy less than the Fermi energy. For such states, as we take the limit T −→ 0,
the exponential factor e−β(εα−µ) grows without bound, such that the logarithm, in this limit, gives

ln
(

1 + e−β(εα−µ)
)
' ln

(
e−β(εα−µ0)

)
= −β (εα − µ0) (9.97)

Then, as T −→ 0, the expression for the Landau potential reduces to

G =
∑
α

(εα − µ0)

=

∫ εF

0
dε g(ε)(ε− εF )

=

(
4π
√

2(2s+ 1)V m3/2

(2π~)3

)∫ εF

0
dε ε1/2(ε− εF )

= −2

3

[
3

10
N

(2π~)2

m

(
3

4π(2s+ 1)

)2/3

ρ2/3

]
(9.98)

Since G = −PV , we get the equation of state

PV =
2

3

[
3

10
N

(2π~)2

m

(
3

4π(2s+ 1)

)2/3

ρ2/3

]
(9.99)

The mean energy of the system at absolute zero is easy to compute, given (9.92)

E =
∑
α

nαεα

=

∫ εF

0
dε g(ε)ε

=
3

10
N

(2π~)2

m

(
3

4π(2s+ 1)

)2/3

ρ2/3 (9.100)

From eqns.(9.99) and (9.100), it follows that

PV =
2

3
E (9.101)
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9.2.3 Electrons in a metal: a strongly degenerate Fermionic system

We now look at a physical example of a system of weakly interacting Fermions (effectively) at absolute
zero. Consider electrons in a metal. Electrons in ametal are loosely bound and can propagate over the
crystal lattice. Let us compute the number density of electrons in a typical metal, say, copper. For an
electrons, the fspin factor (2s+ 1) = 2. The number density of electrons in copper is about ρ ∼ 8.5× 1022.
Given the electron mass, the Fermi temperature (9.100) is about TF ∼ 85, 000◦K! It is then an excellent
approximation to assume that effectively, electrons in metals are close to absolute zero.

Electrons in a metal behave as if they are weakly interacting particles. This is a purely quantum
effect, arising because of a combination of three reasons: (a) Even though electrons possess charge, a
metal is on the whole electrically neutral. Therefore, charge on an electron is effectively ‘shielded’ by the
positive ionic cores (b) Due to the periodicity of the metal lattice, electrons propagate effectively as ‘waves’
(the wavefunction is highly delocalized. These wavefunctions are called ‘Bloch waves’). Because of this
delocalization, any one electron cannot ‘resolve’ the localized charge of the ionic cores. As a result, it
only sees an effective charge +e distributed over the entire lattice (c) The electrons states do interact with
each other, but cannot alter their quantum states by scattering off other electrons, as close to absolute
zero, those states are already occupied by other electrons (being Fermions, they cannot occupy states
already occupied). How can we test this (seemingly paradoxical) hypothesis, that even though electrons
interact strongly through charge, they are effectively ‘free’ in a metal? Once again, a measurement of the
heat capacity of the system can shed light on the microscopic Physics, which is not directly accessibel.
Therefore, modelling electrons in ametal as a system of weakly interacting particles, we compute the heat
capacity of the system at close to absolute zero. At this point, we will need to acknowledge that the
system is not really at absolute zero, but at temperature T such that T << TF . Then, we need to compute
thermodynamic quantities as expansions in the small parameter T/TF . Before we do a rigorous analysis,
we can qualitatively estimate the behaviour of the heat capacity as a function of temperature. At absolute
zero, the highest single particle state occupied by electrons has energy εF . At T > 0, we expect electrons
to get excited to higher energies. Given T << TF , how high an energy do we expect the electrons to get
excited to? The available energy is of the order kBT . Electrons occupying low energy states cannot absorb
this energy and get excited, since the higher states are already occupied by electrons. However, electrons
with energy between εF −kBT and εF can get excited by kBT . Then, qualitatively, the occupation number
vs energy plot will change to the following

Figure 9.4: Occupation number for Fermions at T << TF

Again, qualitatively, the number of electrons that will be excited will be of the order of

Ne ' N
T

TF
(9.102)

These are the only electrons which are ‘dynamical’. Classically, the heat capacity per particle associated
with translational degrees of freedom is 3/2kB. Therefore, since we expect Ne electrons to participate in
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the dynamics, the total heat capacity of the system will be

Cv '
3

2
NekBT

=
3

2
kBN

T

TF
(9.103)

The molar heat capacity is then

cv '
(

3

2
R

)
T

TF
(9.104)

which is expected to vary linearly with temperature. Since T << TF , the major contribution to cv comes
from lattice vibrations. However, at very low temperatures (T much less than the Debye temperature),
the lattice contribution to cv falls as ∼ T 3 whereas that due to electrons falls linearly with T . Therefore,
to confirm that validity of the ‘free electron model’, the specific heat needs to be measured at very low
temperatures. At very low temperatures, linear behaviour is empirically observed.

Let us now do a more rigorous analysis, involving an expansion in powers of the small parameter T/TF .
We will work with a system of electrons, for which the spin factor 2s + 1 = 2. The Landau potential for
the system is

G = − 1

β

∑
α

ln
(

1 + e−β(εα−µ)
)

=
−kBT

√
2 V m3/2

π2~3

∫ ∞
0

dε ε1/2 ln
(

1 + e−β(ε−µ)
)

(9.105)

Integrating by parts, we get

G = −2

3

√
2 V m3/2

π2~3

∫ ∞
0

dε
ε3/2

eβ(ε−µ) + 1
(9.106)

The constraint equation for the chemical potential is

N =
∑
α

1

eβ(εα−µ) + 1

=

√
2 V m3/2

π2~3

∫ ∞
0

dε
ε1/2

eβ(ε−µ) + 1
(9.107)

In either equation, we need to compute integrals of the form

I =

∫ ∞
0

dε
f(ε)

eβ(ε−µ) + 1
(9.108)

Introducing variable of integration x = β(ε− µ)

I = kBT

∫ ∞
−βµ

dx
f(µ+ kBTx)

ex + 1
(9.109)

The integral can be split into two integrals

I = kBT

∫ 0

−βµ
dx

f(µ+ kBTx)

ex + 1
+ kBT

∫ ∞
0

dx
f(µ+ kBTx)

ex + 1
(9.110)

Using transformation x −→ −x in the first integral gives

I = kBT

∫ βµ

0
dx

f(µ− kBTx)

e−x + 1
+ kBT

∫ ∞
0

dx
f(µ+ kBTx)

ex + 1
(9.111)

Now
1

e−x + 1
= 1− 1

ex + 1
(9.112)
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Then

I = kBT

∫ βµ

0
dxf(µ− kBTx)− kBT

∫ βµ

0
dx

f(µ− kBTx)

1 + ex
+ kBT

∫ ∞
0

dx
f(µ+ kBTx)

ex + 1
(9.113)

In the first integral, we introduce a variable ε = µ − kBTx. In the second integral, since βµ >> 1
(T << TF ), we can push the upper limit to infinity. Then

I =

∫ µ

0
dε f(ε) + kBT

∫ ∞
0

dx

[
f(µ+ kBTx)− f(µ− kBTx)

1 + ex

]
(9.114)

Expanding f(µ+ kBTx)− f(µ− kBTx) in a Taylor series gives

f(µ+ kBTx)− f(µ− kBTx) = 2
∞∑
n=0

f (2n+1)(µ)

(2n+ 1)!
(kBT )2n+1x2n+1 (9.115)

Then

I =

∫ µ

0
dε f(ε) + 2kBT

∞∑
n=0

f (2n+1)(µ)

(2n+ 1)!
(kBT )2n+1 ×

∫ ∞
0

dx
x2n+1

1 + ex
(9.116)

First few terms in the expansion are

I =

∫ µ

0
dε f(ε) + 2(kBT )2f ′(µ)

∫ ∞
0

dx
x

1 + ex
+

1

3
(kBT )4f ′′′(µ)

∫ ∞
0

dx
x3

1 + ex
+ ... (9.117)

The integrals can all be evaluated in terms of the Riemann zeta function

∫ ∞
0

dx
x

1 + ex
=

π2

12∫ ∞
0

dx
x3

1 + ex
=

7π4

120
(9.118)

This gives

I =

∫ µ

0
dε f(ε) +

π2

6
(kBT )2f ′(µ) +

7π4

360
(kBT )4f ′′′(µ) + ... (9.119)

Let us apply this expansion to determine equailibrium properties of the system. The Landau potential
is given by eqn.(9.106). In that expression, we recognize f(ε) = ε1/2, f ′(ε) = 3ε1/2/3, .... This gives, upto
first order

I =

∫ µ

0
dε ε1/2 +

π2

4
(kBT )2µ1/2

=
2

5
µ5/2 +

π2

4
(kBT )2µ1/2 (9.120)

Then

G = −2

3

√
2 V m3/2

π2~3

[
2

5
µ5/2 +

π2

4
(kBT )2µ1/2

]
(9.121)

The particle number constraint is

N = −
(
∂G
∂µ

)
T,V

=
V (2m)3/2

3π2~3

[
µ3/2 +

π2

8
(kBT )2µ−1/2

]
(9.122)
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Therefore
3π2~3

(2m)3/2
ρ = µ3/2

[
1 +

π2

8

(
kBT

µ

)2
]

(9.123)

The left hand side of the above equation is just ε
3/2
F . Then,

ε
3/2
F = µ3/2

[
1 +

π2

8

(
kBT

µ

)2
]

(9.124)

This gives (binomial approximation)

µ = εF

[
1− π2

12

(
kBT

µ

)2
]

' εF

[
1− π2

12

(
kBT

εF

)2
]

(9.125)

where in the second equation, to the given approximation, µ on the right hand side has been replaced by
εF . the above equaiton determines the chemical potential of the system.

To compute the equation of state, we compute the Landau potential to this order. for this, we need to
compute µ65/2 and µ1/2. These are computed to be

µ5/2 = ε
5/2
F

[
1− 5π2

24

(
T

TF

)2
]

µ1/2 = ε
1/2
F

[
1− π2

24

(
T

TF

)2
]

(9.126)

Substituting in eqn.(9.127) (and after some simple math)

G = −2

3

√
2 V m3/2

π2~3
× 2

5
ε
5/2
F

[
1 +

5π2

12

(
T

TF

)2
]

(9.127)

This gives the equation of state

P =
2

5
εF ρ

[
1 +

5π2

12

(
T

TF

)2
]

(9.128)

We now compute the specific heat of the system and see if the behaviour agrees with what we anticipated
(linear variation with T ). For this, we need to compute the mean energy of the system. At this point,
it is instructive to deduce a relationship between the pressure, volume and energy of a system of weakly
interacting particles in equilibrium. This exercise also sheds light on the quantum mechanical interpretation
of pressure. Consider a system of particles (it could be an interacting system) confined to volume V . This
system will have quantum microstates r with energy eigenvalues Er which will depend on the volume of the
system. For instance, for a weakly interacting system, the energy eigenstates (microstates) of the system
in the occupation number representation are labelled as r ≡ {nα} where nα is the occupation number of
the single particle state |α〉. Since the energy of a single particle state is given by eqn.(9.25), the energy of
microstate r ≡ {nα} is of the form

E{nα} =
π2~2

2mV 2/3
f{nα} (9.129)

where f{nα} depends only on the occupation numbers. In particular, the volume dependence of the
microstate is through the factor V −2/3. For a general system, the volume dependence could be more
complicated. In thermal equilibrium, the system is flipping between different microstates. Say, we change
the volume of the system by dV . Assuming this process is ‘slow’, for any given microstate, the occupation
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numbers will not change, but the energy of the microstate will change due to a change of volume. This
change in energy of microstate r will be

dEr =
∂Er
∂V

dV (9.130)

This must be equal to −PrdV , where Pr is the pressure exerted by the system when in microstate r. Then,

PrdV = −∂Er
∂V

dV (9.131)

from which it follows that the

Pr = −∂Er
∂V

(9.132)

The mean pressure of the system will be given by an average over microstates, averaged over the probability
distribution

P = −∂Er
∂V

(9.133)

Let us apply this to a system of weakly interacting particles. It is clear from (9.129) that for this system,

∂Er
∂V

= − 2

3V
Er (9.134)

Therefore,

P = −∂Er
∂V

=
2

3V
Er

=
2

3V
E (9.135)

where E is the mean energy of the system. this can be written as

PV =
2

3
E (9.136)

We now go back to computing the mean energy and heat capacity of the Fermionic system. It follows from
eqns.(9.128) and (9.136) that

E =
3

2
PV

=
3

5
NεF

[
1 +

5π2

12

(
T

TF

)2
]

(9.137)

from which the heat capacity can be computed

CV =

(
E

T

)
V

=
π2

2
NkB

(
T

TF

)
(9.138)

The molar specific heat is

cv =
π2

2
R

(
T

TF

)
(9.139)

which, apart from overall numerical factor, is the same as (9.104).
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9.2.4 White dwarf stars

An interesting system that can be viewed as a system of weakly interacting electrons is a white dwarf star.
These are abnormally dim and small for their colour. This is because they have used up all the hydrogen
and what is left is mostly helium. In the absence of pressure due to nuclear fusion, the star contracts.
What holds the star against gravitational collapse? The temperature and mass of a white dwarf star are of
the order of solar temperature and mass. The temperature T ∼ T� ∼ 107 ◦K corresponds to energyb scale
ε0 ∼ 1000eV , which is much larger than the binding energy of electrons in the helium atom. Therefore,
the helium atoms are completely ionized. The star is much more dense compared to the Sun, with mass
density ρM ∼ 107ρ� where ρ� ∼ 1g/cm3 is the solar density. Assuming that the star is mostly helium, the
number density of electrons is of the order ρ ∼ 1030cm−3. Assuming the expression for Fermi energy given
in eqn.(9.94), given this density, the Fermi energy is of the order εF ∼ 20MeV which is about forty times
the rest mass energy of an electron mc2 = 0.5MeV . Therefore, the electrons are highly relativistic. The
Fermi temperature is of the order TF ∼ 1011 ◦K. Since the temperarture of the star is T ∼ T� ∼ 107 ◦K,
the system of electrons is at temperature T << TF , just as in metals. Then, to leading order, we can
assume that the system is effectively at T = 0. A white dwarf star can then be modelled as a core of
helium nuclei (which provide mass to the star) surrounded by an electron gas.

We now analyze the stability of such a star. Given a star in equilibrium, if we take a section of the
star, it is held in equilibrium due to a competition between the pressure and gravitational forces. Consider
the following section of thickness dr, area A and mass dm. The pressure forces on the two faces and the
gravitational force have been highlighted

Figure 9.5: Stellar equilibrium.

In equilibrium

P (r + dr)A+
Gm(r)dm

r2
− P (r)A = 0 (9.140)

where m(r) is the mass of the star upto radius r, given in terms of density ρ(r) as

m(r) = 4π

∫ r

0
dr r2ρ(r) (9.141)

The mass of the section is related to the density as dm = ρ(r)Adr. Substituting in the equilibrium equation
gives

P (r + dr)A− P (r)A = −Gm(r)ρ(r)Adr

r2
(9.142)

which gives a differential equation for the variation of pressure with radial distance from the centre of the
star

dP

dr
= −Gm(r)ρ(r)

r2
(9.143)
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From eqn.(9.141), we get

dm

dr
= 4πr2ρ(r) (9.144)

Given the equation of state P = P (ρ),

dP

dr
=
dP

dρ

dρ

dr
(9.145)

Then, eqn.(9.143) gives

dρ

dr
= − 1

dP/dρ

Gm(r)ρ(r)

r2
(9.146)

Equations (9.144) and (9.146) form a set of coupled first order differential equations in ρ(r) and m(r)
and have a unique solution, given ρ(0) = ρC (central density) and m(0) = 0 (mass contained within zero
radial distance from the centre is zero). The solutions form a one-parameter family (with the central
density being the parameter)

ρ = ρ(r, ρC)

m = m(r, ρC) (9.147)

The radius R and mass M of theb star are given by the conditions

ρ(R, ρC) = 0

m(R, ρC) = M (9.148)

which can be solved to give the function R = R(M). Then, given the mass of the star, its radius can be
computed. A given equation of state can sustain equilibrium only up to a certain critical mass MC . This
critical mass is the solution to R(MC) = 0. When the star exceeds this critical mass, it becomes unstable,
collapses, till some new Physical process takes over, and changes the equation of state such that a new
equilibrium is attained.

In case of a white dwarf star, the equation of state is just an expression for the electron degeneracy
pressure as a function of the electron density at (effectively) T = 0. Since the electrons are relativistic,
we need to recompute the relativistic single particle states. For this, we visualise the electron system to
be confined to a torus of volume V = L3. Given translational invariance, the energy eigenstates for an
electron are just the momentum states with wavefunctions of the form

ψ~p(~r) ∼ ei~p·~r/~ (9.149)

The energy eigenvalues for this state will be

ε(~p) =
√
~p2c2 +m2c4 (9.150)

Given the periodicity of the torus imposes the constraint

ψ~p(~r + ~L) = ψ~p(~r) (9.151)

which results in the condition

ei~p·
~L/~ = 1 (9.152)

This constrains the momentum eigenvalues to

~pn =
2π

L
~ ~n (9.153)
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where ~n = nxî+ny ĵ+nzk̂ ; nx, ny, nz = 0,±1,±2,±3, .... These momentum states are the single particle
states. The sum over single particle states can be reduced to integrals∑

α

f(εα) = 2
∑

∆nx∆ny∆nzf(εα)

= 2

(
L

2π~

)3∑
∆px∆py∆pzf(ε)

−→ 2

(
L

2π~

)3 ∫
dpxdpydpz f(ε) (9.154)

Since the summand depends only on the energy, we can reduce the momentum integrals to a spherical
integral

∑
α

f(εα) −→ 2

(
L

2π~

)3

× 4π

∫ ∞
0

dp p2f(ε)

=
V

π2~3

∫ ∞
0

dp p2 f(ε) (9.155)

Here, ε is given by eqn.(9.150). We assume that electron system to be at T = 0. Then, the occupation
number distribution is given by eqn.(9.92). Then

N =
∑
α

nα

=
V

π2~3

∫ pF

0
dp p2

(9.156)

where pF is the magnitude of momentum of the highest energy single particle state for which the Fermi
energy will be

εF =
√
p2
F c

2 +m2c4 (9.157)

The above integral gives the ‘Fermi momentum’

pF = ~(3π2ρ)1/3 (9.158)

The Landau potential at T = 0 is

G =
∑
α

(εα − εF )

=
V

π2~3

∫ pF

0
dp p2(ε(p)− εF )

=
V

π2~3

∫ pF

0
dp p2

[√
p2c2 +m2c4 − εF

]
(9.159)

Introducing dimensionless variable x = p/mc gives

G =
V m4c5

π2~3

∫ xF

0
dx x2

[√
1 + x2 − xF

]
(9.160)

where xF = pF /mc. Since the electrons are highly relativistic, pF >> mc. Therefore, xF >> 1. Then

εF
mc2

=
√

1 + x2
F

' xF +
1

2xF
(9.161)
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Then ∫ xF

0
dx x2

√
1 + x2 =

∫ xF

0
dx x3

√
1 + (1/x2)

'
∫ xF

0
dx x3

[
1 +

1

2x2

]
=

x4
F

4
+
x2
F

4
(9.162)

This gives

G = −V m
4c5

12π2~2

[
x4
F − x2

F

]
(9.163)

Since G = −PV , we get the equation of state

P =
m4c5

12π2~2

[
x4
F − x2

F

]
(9.164)

where

xF =
pF
mc

=
~
mc

(3π2ρ)1/3 (9.165)

Then, the equation of state is of the form

P = c1ρ
4/3 − c2ρ

2/3 (9.166)

where c1 and c2 are microscopic parameters. We can use this equation of state in the coupled differential
equations for density and mass functions to determine the critical mass upto which a white dwarf star can
sustain equilibrium. However, we shall do an approximate analysis to estimate this mass.

The first approximation we make is to assume a uniform density and pressure. First, imagine that the
Fermion gas is enclosed in a spherical ragion of radius R, and we ‘switch off’ gravity. If we compress the
volume by radius dR, the change in the kinetic energy of the system is

dEK = −P4πR2dR (9.167)

In presence of gravity, we do not need to artificually restrict the gas to this volume (gravity does it). Then,
this change should be equal to the change in the potential energy of the gas, given by (on dimensional
grounds)

dEg = α
GM2

R2
dR (9.168)

where α is a dimensionless number. Since dE0 = −dEg, therefore

P =
α

4π

GM2

R4
(9.169)

This pressure should equal the Fermi pressure (9.164). The mass of the star is M ∼ 2Nmp where N is the
number of electrons and mp is the proton mass.Furthur, the radius of the star is R = (3V/4π)1/3 where V
is the volume. Then, the number density of electrons is given by

ρ =
3M

8πmpR3
(9.170)
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Then

xF =
~
mc

1

R

(
9π

8

M

mp

)1/3

=
M

1/3

R
(9.171)

where M is the mass of the star measured in units of proton mass

M =
9π

8

M

mp
(9.172)

and R is its radius measured in units of the compton wavelength of electrons, λC = ~/(mc)

R =
R

λC
(9.173)

Then, the Fermi pressure can be written as

P = k

[
M

4/3

R
4 − M

2/3

R
2

]
(9.174)

where

k =
m4c5

12π2~3
(9.175)

The pressure is also given by

P =
α

4π

GM2

R4

=
α

4π
G

(
8mp

9π

)2 (mc
~

)4 M
2

R
4

= k′
M

2

R
4 (9.176)

Equating these gives

k

[
M

4/3

R
4 − M

2/3

R
2

]
= k′

M
2

R
4 (9.177)

which gives

M = M
1/3

[
1−

(
M

M0

)2/3
]

(9.178)

where

M0 =

(
k

k′

)
(9.179)

A calculation shows that M0 ∼ M� where M� is the solar mass. Equation (9.178) shows that the
critical mass is Mc = M0 ∼ M�. A more precise calculation gives Mc ∼ 1.4M�. This is known as the
Chandrasekhar limit.


