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References
‘An Introduction to Mechanics’ by D. Kleppner and R. Kolenkow (mostly for
Problems)
The Feynman Lectures in Physics - Volume 1
‘Introduction to Classical Mechanics’ by David Morin (for Problems, discussion on
approximations and dimensional analysis)
Internet Resource 1: ‘Fundamentals of Physics with Rammurthy Shankar’ - by
YaleCourses (YouTube Lectures)
‘Classical Mechanics’ - Leonard Susskind, Stanford University (YouTube Lectures)
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Computational Physics

Exploring Physics on the computer: Simulating mechanical systems
My programming language of choice: Python
Link: https://www.python.org
Download and install soon as possible.
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Final Instructions

Switch off mobile phones before entering the class.
No conversation in class.
Feel free to stop me and ask questions.
Do not waste your precious time and the money the taxpayer shells out to
subsidise your education. Start working day one, First Semester can make or
break you.
Feel free to contact me with questions at: abhinav.gupta@ststephens.edu
Create a shared Dropbox Folder for Lecture Notes/Presentations. You should aim
to rely mostly on the lectures, supplemented with problems from references.
There will be a Tutorial class once a wekk for problem solving. Form groups of 4-5
students for Tutorials. Once a week, one group meets me personally in my office
to discuss possible issues/problems. Arrange to sit as a group, if possible, in class.
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Predictability of Natural Phenomena
Laws of Physics

Are natural phenomena predictable?
Evidence for underlying Laws:

Cyclicity of natural phenomena

Predicable trajectories: Sports!

A. Gupta Classical Mechanics
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Predicting the Future

Weather Now

 
Complete Mathematical 

Description 
‘State of the System’

Dynamics 
"Laws of Physics”
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in the Future

Weather in 
the Future Weather 

Forecast
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Predictability of Natural Phenomena
Laws of Physics

Assumptions:
1 Nature is not arbitrary. There exist fundamental Laws that govern its behaviour.
2 Given initial data, these Laws allow us to (in principle) predict the future to

arbitrary accuracy.
3 The Laws are time-reversible. Given present data, we can find information about

the past to arbitrary accuracy*.

Laws of Physics
 
 

State of the System 
in the Future

 
 

State of the System 
'Now'

Forward in Time

Laws of Physics
 
 

State of the System 
in the Past

 
 

State of the System 
'Now'

Backward in Time
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Position and Velocity

Definition

State of a System: Minimum information about the system which allows us to predict
the same information at a later time (or a time in the past)

Example

Object falling near the surface of the Earth
Specifying the initial position and velocity uniquely determines motion.

v = 0

v = 1 m/s

v = 1 m/s

Conjecture

The state of an object is completely specified by its position and velocity .
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Labelling Position

x

y

O

�

r

(r, �)

x

y

x

y
(x, y)

O

Cartesian Coordinates Polar Coordinates
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Velocity

x

y

O
x(t)

y(t)

x(t + �t)

y(t + �t)

�x

�y

’How Fast’: Change in position coordinates in unit time.
Instantaneous measure of ’How Fast’: Instantaneous velocity.

v

x

= �t!0
x(t +�t)� x(t)

�t

=
dx(t)

dt

v

y

= �t!0
y(t +�t)� y(t)

�t

=
dy(t)

dt
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Coordinate Transformations

x

y

x

y
(x, y)

O

x�

y�

y�

x�

(x�, y�)

O�

x

y

x

y

O

x�

y�

y�

x�O�

a

b

x� = x � a

y� = y � b

Translation

x

y

x

y

O

x�

y�

y�

x�
�

�

x� = x cos � + y sin �

y� = �x sin � + y cos �

Rotation
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Vectors

Coordinate systems versus ’absolute’ quantities
Position of an object relative to other objects (Displacement)

x

y

O

x�

y�

�

�

�x

�y

�x�

�y�
�d

�x

0 = �x cos ✓ +�y sin ✓

�y

0 = ��x sin ✓ +�y cos ✓

~
d ⌘ (�x ,�y)

⌘
�
�x

0,�y

0�0
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Algebra of displacements:

x

y

O

x�

y�

�

�

�d

�d1

�d2

We note:
If ~

d1 ⌘ (�x1,�y1) and ~
d2 ⌘ (�x2,�y2) then ~

d ⌘ (�x1 +�x2,�y1 +�y2).
Similarly
If ~

d1 ⌘
�
�x

0
1,�y

0
1
�0 and ~

d2 ⌘
�
�x

0
2,�y

0
2
�0 then ~

d ⌘
�
�x

0
1 +�x

0
2,�y

0
1 +�y

0
2
�0.

This suggests we define an operation of ’addition’.
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Addition of displacements:

(�x1,�y1) + (�x2,�y2) = (�x1 +�x2,�y1 +�y2)
�
�x

0
1,�y

0
1
�0

+
�
�x

0
2,�y

0
2
�0

=
�
�x

0
1 +�x

0
2,�y

0
1 +�y

0
2
�0

Both equations have identical geometrical content:

~
d1 + ~

d2 = ~
d

x

y

O

x�

y�

�

�

�d1

�d2

�d = �d1 + �d2

�d1

�d2

�d = �d1 + �d2 �d1

�d2
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Multiplication of displacement with a number:
Define

c (�x ,�y) = (c�x , c�y)

Geometrical Interpretation:

�d

c �d, c > 0

c �d, c < 0
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Unit Displacements

(�x ,�y) = �x (1, 0) +�y (0, 1)

=) ~
d = �x î +�y ĵ

Similarly
�
�x

0,�y

0�0 = �x

0 (1, 0)0 +�y

0 (0, 1)0

=) ~
d = �x

0
î

0 +�y ĵ

0

where î ⌘ (1, 0), ĵ ⌘ (0, 1), î

0 ⌘ (1, 0)0, ĵ

0 ⌘ (0, 1)0 are displacements of unit length.

A. Gupta Classical Mechanics



References
Computation

The Mechanics of Nature
State of a System

Vectors

Displacement
Vector Quantities
Vector Algebra
Scalar Product
Velocity as a Vector
Relative Velocity as Vector Addition

x

y

O

x�

y�

�

�

�d

î

î�
ĵ

ĵ�

�x

�x�

�y

�y� �x î

�y ĵ

�x� î�
�y� ĵ�

~
d = �x î +�y ĵ

= �x

0
î

0 +�y ĵ

0
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Vectors

Definition

A ‘Vector’ ~A (in a plane) is any physical quantity that in any given Cartesian coordinate
system (x , y) is represented by a pair of numbers (A

x

,A
y

) such that the pair of
numbers (A

x

,A
y

) and (A0
x

,A0
y

) assigned in two different Cartesian systems (x , y) and
(x 0, y 0) respectively oriented by an angle ✓ (with origins displaced by an arbitrary
amount) are related as

A

0
x

= A

x

cos ✓ + A

y

sin ✓

A

0
y

= �A

x

sin ✓ + A

y

cos ✓

Note

This is the same relation as between components of a displacement in space.

How do we know that the different pairs of numbers (A
x

,A
y

) and (A0
x

,A0
y

) represent
the same quantity?
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We can construct a number from each pair which will be agreed upon in all
coordinate systems. This number is called the magnitude of the vector ~A, denoted
by

���~A
���

���~A
��� =

q
A

2
x

+ A

2
y

=
q

A

02
x

+ A

02
y

Consider a unit dispacement in space (a direction, or a ‘unit vector’) n̂ with
components (n

x

, n
y

) and (n0
x

, n0
y

)0 in coordinate systems (x , y) and (x 0, y 0).

x

y

O

x�

y�

�

�

n̂

We can construct another number which will be agreed upon in both coordinate
systems

A

x

n

x

+ A

y

n

y

= A

0
x

n

0
x

+ A

0
y

n

0
y

We denote this number as ~
A · n̂.
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Since A

2
x

+ A

2
y

=
���~A

���
2
, we can define an angle � such that A

x

=
���~A

��� cos� and

A

y

=
���~A

��� sin�. Similarly, we can define angle �0 such that A

0
x

=
���~A

��� cos�0 and

A

y

=
���~A

��� sin�0. What is the significance of these angles?

x

y

O

x�

y�

�

�

n̂

x

y

� x�

y�

��

n

x

= cos↵, n
y

= sin↵, n0
x

= cos↵0, n0
y

= sin↵0, with ↵� ↵0 = ✓.

~
A · n̂���~A

���
=

A

x

n

x

+ A

y

n

y���~A
���

=

���~A
��� cos� cos↵+

���~A
��� sin� sin↵

���~A
���

= cos(�� ↵)
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However,

~
A · n̂���~A

���
=

A

0
x

n

0
x

+ A

0
y

n

0
y���~A

���

=

���~A
��� cos�0 cos↵0 +

���~A
��� sin�0 sin↵0

���~A
���

= cos(�0 � ↵0)

Then

�0 � ↵0 = �� ↵

=) �� �0 = ↵� ↵0

= ✓
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This allows us to sketch ~
A as a directed ‘arrow’ with length

���~A
��� and direction inclined by

� relative to x-axis and �0 relatve to the x

0-axis

x

y

O

x�

y�

�

�

n̂

x

y

x�

y�

�A

�
��
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Vector Algebra

Since any ~
A mimics properties of displacement, we can geometrically define addition of

vectors according to the parallelogram law for displacements. It then follows that
vectors can be multiplied by scalars (numbers) and added to each other with properties

1
c

~
A has the same/opposite direction as ~

A and magnitude equal to |c|
���~A

��� if c is
positive/negative.

2 ~
A + ~

B = ~
B + ~

A

3 ~
A + (~B + ~

C) = (~A + ~
B) + ~

C

4
c

⇣
~
A + ~

B

⌘
= c

~
A + c

~
B

This allows us to write

~
A = A

x

î + A

y

ĵ

= A

0
x

î

0 + A

0
y

ĵ

0

c

~
A = (c A

x

) î + (c A

y

) ĵ

~
A + ~

B = (A
x

+ A

y

) î + (B
x

+ B

y

) ĵ
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Scalar Product

A Scalar quantity is a number which is measured to be the same in all coordinate
systems.
Given two vector quantities ~

A and ~
B, we can construct a scalar product defined in any

one coordinate system as

~
A · ~B = A

x

B

x

+ A

y

B

y

= A

0
x

B

0
x

+ A

0
y

B

0
y

Scalar quantities are of fundamental importance in Physics since all measurements
are numbers and so must be scalars.
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Velocity as a Vector
Position vector: Displacement vector relative to some fixed point (which may or may
not be chosen to be the origin of some coordinate system).

x

y

O

�r(t) �r(t + �t)

��r

x(t) x(t + �t)

y(t + �t)

y(t)

î

ĵ

With a coordinate system attached, we can write

~
r(t) = x(t) î + y(t) ĵ

Then, the displacement vector from t to t +�t will be

�~
r = ~

r(t +�t)�~
r(t)

= (x(t +�t)� x(t)) î + (y(t +�t)� y(t)) ĵ
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Multiplying with (1/�t)

�~
r

�t

=

✓
x(t +�t)� x(t)

�t

◆
î +

✓
y(t +�t)� y(t)

�t

◆
ĵ

Taking the limit �t ! 0, we get the velocity vector

~
v = lim

�t!0

�~
r

�t

= lim
�t!0

✓
x(t +�t)� x(t)

�t

◆
î +

✓
y(t +�t)� y(t)

�t

◆
ĵ

= v

x

î + v

y

ĵ

where v

x

= dx/dt and v

y

= dy/dt . It is easy to check that under a coordinate
transformation, the velocity components transform as

v

0
x

= v

x

cos ✓ + v

y

sin ✓

v

0
y

= �v

x

sin ✓ + v

y

cos ✓

which they ought to, since they describe a vector quantity.
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Vector Addition of Velocity

�r(t)

�r�(t)

�R(t)

�r(t) = �r�(t) + �R(t)

S

S�

�v

�V

Let velocity of object observed by S

0 be ~
v

0 and that observed by S be ~
v . Then since

~
r(t) = ~

R(t) + ~
r

0(t)

Therefore

~
r(t +�t)�~

r(t) = ~
R(t +�t)� ~

R(t) + ~
r

0(t +�t)� ~
r

0(t)

Multiplying with 1/�t and taking limit �t ! 0

Relative Velocity

~
v = ~

V + ~
v

0
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Predicting the Future: The role of Acceleration

Predicting the Future

Object constrained to move along a line

xO

t = t0

x0

v0

Given position and velocity at one instant, what information do we need to predict these
at other instants?

Observation

We only need to be able to find an algorithm that determines the position and velocity
at an infinitesimally close instant, given these at one instant. This would allow us to find
the position and velocity recursively.

A. Gupta Classical Mechanics
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Predicting the Future: The role of Acceleration

Information about position and velocity at instant t allows us to determine the new
position at instant t +�t

x(t +�t) ⇡ x(t) + v(t)�t

This follows from the fact that velocity is rate of change of position.
What do we need to know in addition at instant t to determine the velocity at t +�t?
We need to know the rate of change of velocity at instant t (acceleration)

a(t) =
dv
dt

Given this, we can find the new velocity

v(t +�t) ⇡ v(t) + a(t)�t

We can continue this recursively, if we know the acceleration at all instants of time.
However, we do not know the acceleration as a function of time beforehand,
since we do not know the motion of the object beforehand!

A. Gupta Classical Mechanics
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The way out:
What if we were to know the acceleration of the object, if we know its position and
velocity? That is, a = a(x , v).
Example: A particle with charge in the vicinity of another (much more massive)
particle with opposite charge, which attracts it. Experimentally, it is observed that the
closer the particle to the attractor, the more its acceleration towards it. We can
empirically determine the acceleration of the particle as a function of the distance from
the attractor

x
O

a(x)

x

Given a = a(x), we can set up an algorithm.

A. Gupta Classical Mechanics
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The Algorithm

We are given position and veocity at instant t , and the acceleration as a function of
position. Then, we know the acceleration at instant t (since we know the position at this
instant). Therefore,

x(t +�t) ⇡ x(t) + v(t)�t

v(t +�t) ⇡ v(t) + a (x(t))�t

The position at t +�t allows us to calculate the acceleration at this instant,
a = a (x(t +�t)). Then, we can compute the position and velocity at t + 2�t

x(t + 2�t) ⇡ x(t +�t) + v(t +�t)�t

v(t + 2�t) ⇡ v(t +�t) + a (x(t +�t))�t

and so on.

A. Gupta Classical Mechanics
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Uniform Acceleration

Problem

Consider an object moving with uniform acceleration. Given its position and velocity at
t = 0, we wish to determine them at some instant T . We first divide the total duration
of motion into N parts of duration �t , such that T = N�t . Then, given that the
acceleration is a constant a independent of position, we can set up the iterative
algorithm which allows us to ‘hop’ from instant tn�1 = (n � 1)�t to the instant
tn = n�t . The algorithm will be

x (n�t)� x ((n � 1)�t) = v ((n � 1)�t) �t

v (n�t)� v ((n � 1)�t) = a �t

Show that this algorithm gives v (n�t) = v (0) + (n�t)⇥ a and

x (n�t) = x (0) + v (0)⇥ (n�t) + a(�t)2 ⇥
n(n � 1)

2

Using these expressions, evaluate x(T ) and v(T ) by taking the limit N ! 1 and
�t ! 0 with N�t ! T to get

v(T ) = v(0) + a T

x(T ) = x(0) + v(0) T +
1
2

a T 2

A. Gupta Classical Mechanics
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Observers in Deep Space

We consider a set of observers in spacecrafts in deep space, far from any gravitating
objects. We assume they are not firing their rockets and are in uniform relative motion.
From the point of view of these observers, ’absolute state of rest’ is meaningless, since
if something is rest with respect to one, it is not with respect to another observer.
Clearly, all observers are equivalent, there is no one special observer (since there is
nothing else in the environment to single out his motion, unlike say on the surface of
the Earth). These observers set out to discover the Laws of Physics, which should be
the same for all of them, since they are indistinguishable

S
S�

S��
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Inertial Frames

Observation: Floating asteroids and other debris in space move with uniform velocity,
unless they hit each other or something else. Can this be a ‘Law’? It is possible,
provided all such observers conclude the same thing.

�r(t)

�r�(t)

�R(t)

S

S�

�v

�V

�v� = �v � �V

Since ~V does not change with time (no rockets fired), if ~v is constant, so it ~v 0. Then this
‘Law’ will be true for all observers in spacecrafts which are not firing their rockets.

A. Gupta Classical Mechanics
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Change in Motion

�v

�v�

�V

Observation: Floating asteroids and other debris in space move with uniform velocity,
unless they hit each other or something else, or are in the vicinity of a planet. Can this
be a ‘Law’?

~v 0(t) = ~v(t)� ~V

=)
d ~v 0

dt
=

d~v
dt

+ 0 (since d~V
dt = 0)

=) ~a0 = ~a

Observers in uniform relative motion measure acceleration of objects to be the same.
Then, this can be a ‘Law’.
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The First Law of Motion

First Law:

First Law: There exist observers (such as aboard freely floating spacecrafts in deep
space) who conclude that objects move with uniform motion unless an influence acts
on them (such as other objects hitting them, they being pulled by planets, etc.)

Note: Here, influence involves other objects in the environment of the ‘test’ objects,
such as other objects, planets, etc.
Such ‘frames of reference’ are called Inertial Frames. Then, the first law is basically a
statements saying that there exist such frames.
Note: Given an inertial frame, any other in uniform motion relative to it is an inertial
frame. Therefore, there are an infinite number of inertial frames.
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Non-Inertial Frames

What about an observer accelerating relative to an inertial observer?

�r(t)

�r�(t)

�R(t)

S

S�

�v

�V (t)

�a �= 0

�v�(t) = �v � �V (t)

�a� = ��a

~v 0(t) = ~v � ~V (t)

=)
d ~v 0

dt
= �

d~V
dt

(since d~v
dt = 0 )

=) ~a0 = �~a

Observer accelerating relative to inertial observer will conclude that objects can
accelerate without any external influence. Therefore, The First Law is not valid for
observers accelerating relative to inertial observers. These frames of reference frames
are called Non-Inertial Frames of Reference.
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Interactions and Acceleration
In inertial frames, objects interacting with other objects will accelerate. Can we find a
Law that predicts how this acceleration depends on this interaction?

Experiments with Springs

Relaxed Spring 

Extended Spring 

Compressed Spring 

x = 0

x > 0

x < 0

x

x

x

�a(x)

�r

�r

�a(x)

Observations
Acceleration of the object depends upon its position. It is directed opposite to
displacement of the object from ‘relaxed’ position. For small displacements, it is
found that

~a / �~r

The ‘external influence’ in this case is the spring. The magnitude of acceleration
for a given displacement depends on the nature of the spring, and we term it
strength of the influence.
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Force

Two springs:

x

x

x

�a(x)

�r

�r

2 � �a(x)

1

2
� �a(x)

Observations
Two springs (for the same displacement) lead to twice the acceleration compared
with that due to one spring. In general, N springs lead to N times the acceleration
due to a single spring.
If two objects are lumped into one, the acceleration (everything else being same)
is halved. In general, if N such objects are lumped, acceleration is 1/N times that
of one object.
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The Second Law (for springs)

We can summarise the observations in the form of an equation

~F = m ~a

where ~F quantifies the ‘influence’ of the springs, which we term as Force due to the
springs. For a single spring and small displacement (of the object), ~F = �k ~r where
constant k is a measure of the strength of the force (which depends on the nature of
the spring). For N (identical) springs, ~F = �N ⇥ k ~r . The constant m is a property of
the object(s) on which the force acts. It is proportional to the number of (identical)
objects lumped together. We term this constant as mass.

We can use this equation to calibrate masses of objects by choosing some standard
object to have a ‘unit’ mass. For a given force (spring), accelerations of different
objects will be in inverse ratio of their masses.
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What if we couple different kinds of springs, and different kinds of objects?

�r1
�r2

k1 k2

m1

m2

We still get
~F = m ~a

where now

~F = �k1~r1 � k2~r2

= ~F1 + ~F2

and
m = m1 + m2

Is this a fundamental Law? For this to be a ‘Law’, it must hold under any situation, not
just for springs!
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Electrostatic Force

We take objects of different mass (measured through springs). We have a ’reference’
object of mass M much larger than any other mass, kept at rest. We ‘spray’ some
charge Q on this reference object and different charges on the other objects.

x
M

mO �r

�a

x
M

mO �r

�a

Q > 0

Q > 0 q > 0

q < 0

Observations
Acceleration of object of mass m depends upon its position relative to the
reference object. It is directed opposite to displacement m relative to M and its
magnitude varies as inverse square of the distance For smadisplacements, it is
found that

~a / �
~r
r3

For the same charge, acceleration is inversely proportional to mass m.
For the same mass, acceleration is proportional to each charge (Q and q)
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Once again we can summarise these observations in the form of an equation

~F = m ~a

where
~F =

✓
Qq
r3

◆
~r

More combinations, same Law

M

m

O
�a

�r1

�r2

Q

q

�F =

�
Qq

r3
1

�
�r1 � k �r2

~F = ~F1 + ~F2

=

 
Qq
r3
1

!
~r1 � k ~r2
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Gravitational Force

Gravitational ’force’

�a � �
�

1

r3

�
�r

�r

Earth attracts all objects towards its centre with a ‘force’ such that

~a / �
✓

1
r3

◆
~r

independent of the mass of the objects!
If we imagine shrinking the Earth down to a point, this force should still be there,
though perhaps its form could in principle be different. However, it would still be
directed towards the centre of the Earth.

A. Gupta Classical Mechanics



Acceleration
Newton’s Laws

The Second Law: Interactions
The Third Law: Conservation of Momentum

Electromagnetic Interaction

Visualise Earth as an aggregate of tiny (point-like) objects, each exerting some
gravitational force on a test point-like object of (inertial) mass m. This force should be
of the form

~Fi = �↵ f (ri )~ri

where~ri is the displacement of the test object from the ith constituent and f (ri ) is some
function of ri . The constant ↵ should be the same for all the constituents, since they
are assumed to be identical

i

�ri

m

mi
�r

Assuming the total force due to the Earth is a vector sum of such forces, we should
have X

i

f (ri )~ri /
✓

1
r3

◆
~r
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The only function f (r) which will give this is

f (r) /
1
r3

whose magnitude also goes as inverse distance squared! Since the force is so similar
to the electrostatic force (but universal), we conjecture that all point-like objects
possess a ‘gravitational charge’ mg such that the force exerted by an object of charge
Mg on an object with charge mg is

m

mg

Mg

M
�r

~Fm =

✓
GMgmg

r3

◆
~r
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If we fix object with (inertial mass) M and test this relation for different test masses m,
the acceleration of such a test object will be

~a =
~F
m

=

✓
GMg

r3

◆⇣mg

m

⌘
~r

Experimentally, this acceleration is found to be independent of what is used as a test
object! This is only possible if

m = mg

Thus, gravitational charge is the same as inertial mass. This is also known as the
Principle of Equivalence and is the starting point of Einstein’s General Theory of
Relativity.
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Galilean Relativity
Galilean Relativity: The same experiment conducted in different inertial frames will
give the same result. This implies that there is no way to experimentally single out any
one inertial frame from another. This will happen only if the Laws of Physics have the
same form in all inertial frames.
Does the Second Law have the same form in all Inertial frames?

~F = m ~a

Since ~a is measured the same in all inertial frames (in uniform relative motion), force ~F
must be a vector which remains unchanged from one inertial frame to another. Since
all the forces considered so far are proportional to displacement, this is true
(displacement vector is measured to be the same by all observers)

�r

�R1

�r1

�r2

�R2

�R(t)

�V

�a
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Motion in three dimensions

x

y
O

x(t)

y(t)

z
z(t)

Different Cartesian coordinate systems differing by translation and rotation

x

y
O

z

O�

x�

y�

z�
(x, y, z)

(x�, y�, z�)
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Translations and Rotations

Translations:

x

y
O

z

O�

x�

y�

z�

(x, y, z)

(x�, y�, z�)

a

b

c

x� = x � a

y� = y � b

z� = z � c

Rotations:

x

y
O

z (x, y, z)

O�

x�

y�

z�
(x�, y�, z�)

x�
i =

3�

i=1

Rij xj

(x1, x2, x3) ⌘ (x , y , z) etc.
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Rotation about z:

x 0
1 = x1 cos ✓ + x2 sin ✓

x 0
2 = �x1 sin ✓ + x2 cos ✓

x 0
3 = x3

Rotation Matrices:
0

@
x 0

1
x 0

2
x 0

3

1

A =

0

@
R11 R12 R13
R21 R22 R23
R31 R32 R33

1

A

0

@
x1
x2
x3

1

A

Example: Rotation about x,y,z

Rx (✓) =

0

@
1 0 0
0 cos ✓ sin ✓
0 � sin ✓ cos ✓

1

A

Ry (✓) =

0

@
cos ✓ 0 � sin ✓

0 1 0
sin ✓ 0 cos ✓

1

A

Rz(✓) =

0

@
cos ✓ sin ✓ 0
� sin ✓ cos ✓ 0

0 0 1

1

A
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Transformation of Displacement Components:

x

y
O

z

O�

x�

y�

z� �d

�x 0
i =

3X

i=1

Rij �xj

We can write this as
�X 0 = R �X

where

�X =

0

@
�x1
�x2
�x3

1

A

and

R =

0

@
R11 R12 R13
R21 R22 R23
R31 R32 R33

1

A
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Orthogonal Property of Rotation Matrices: Since rotations and translations preserve
length of displacement, it follows that

�x 0
1

2 +�x 0
2

2 +�x 0
3

2 = �x2
1 +�x2

2 +�x2
3

This can be written as
�X 0T�X 0 = �X T�X

where �X T is the transpose of �X . It then follows that

�X 0T�X 0 = �X T RT R�X

= �X T�X

which imples

Orthogonal Property of Rotation Matrix

RT R = I

where I is the Identity matrix.
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Definition

A ‘Vector’ ~A (in a plane) is any physical quantity that in any given Cartesian coordinate
system (x , y) is represented by a three numbers (Ax ,Ay ,Az) such that these numbers
transform between coordinate systems as

A0
i =

3X

i=1

Rij Aj

Definition

Scalar A scalar is any quantity that is measured to be the same in all coordinate
systems differing by a translation or rotation.
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Scalar Product: A scalar out of two vectors Define

~A · ~B = Ax Bx + Ay By + AzBz

We define column vectors

A =

0

@
Ax
Ay
Az

1

A

B =

0

@
Bx
By
Bz

1

A

Then

A0
x B0

x + A0
y B0

y + A0
zB0

z = A0T B0

= AT RT RB

= AT B

= Ax Bx + Ay By + AzBz

which demonstrates that ~A · ~B is a scalar.
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Cross Product

In three dimensions, given two vectors ~A and ~B, we can construct another vector ~C
through the so-called cross-product

~C = ~A ⇥ ~B

such that in a given coordinate system, if the components of ~A are (Ax ,Ay ,Az) and the
components of ~B are (Bx ,By ,Bz), the the components of ~C are

Cx = Ay Bz � AzBy

Cy = AzBx � Ax Bz

Cz = Ax By � Ay Bx

How do we know the set of numbers (Cx ,Cy ,Cz) describe a vector? It is easy to check
that under rotations, these numbers transform the same way as a vector should. That
is, given that A0

i =
P3

i=1 Rij Aj and B0
i =

P3
i=1 Rij Bj it follows that

C0
i =

3X

i=1

Rij Cj
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Let us check this for rotation about z-axis. We are given that

A0
x = Ax cos ✓ + Ay sin ✓

A0
y = �Ax sin ✓ + Ay cos ✓

A0
z = Az

and that

B0
x = Bx cos ✓ + By sin ✓

B0
y = �Bx sin ✓ + By cos ✓

B0
z = Bz

Then,

C0
x = A0

y B0
z � A0

zB0
y

= (�Ax sin ✓ + Ay cos ✓)Bz � (�Bx sin ✓ + By cos ✓)Az

= (Ay Bz � AzBy ) cos ✓ + (AzBx � Ax Bz) sin ✓

= Cx cos ✓ + Cy sin ✓
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Similarly,

C0
y = A0

zB0
x � A0

x B0
z

= (Bx cos ✓ + By sin ✓)Az � (Ax cos ✓ + Ay sin ✓)Bz

= �(Ay Bz � AzBy ) sin ✓ + (AzBx � Ax Bz) cos ✓
= �Cx sin ✓ + Cy cos ✓

and

C0
z = A0

x B0
y � A0

y B0
x

= (Ax cos ✓ + Ay sin ✓)(�Bx sin ✓ + By cos ✓)
� (�Ax sin ✓ + Ay cos ✓)(Bx cos ✓ + By sin ✓)

= Ax By � Ay Bx

= Cz

which verifies that (Cx , cy ,Cz) transform as components of a vector under rotation
about the z direction. It is easily checked that the same is true for rotations about the x
and y directions also.
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To visualise the cross product of vectors ~A and ~B, let us choose a coordinate system
such that the two vectors lie in the x � y plane, with ~A along the x direction. Then,
~A =

���~A
��� î and ~B =

���~B
��� cos ✓ î +

���~B
��� sin ✓ ĵ where ✓ is the angle between ~A and ~B

x

y
O

z

�
�A �B

î

ĵ

�C

In this coordinate system, Cx = Cy = 0, and Cz =
���~A
���
���~B
��� sin ✓. This tells us that

~C = ~A ⇥ ~B is perpendicular to the plane containing both ~A and ~B and its magnitude is
given by the product of the magnitudes of the two vectors times sin of the angle
between them. Since this description is coordinate independent, this is the
interpretation of the cross -product of two vectors
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Definition

Cross Product The cross product of two vectors ~A and ~B is a vector perpendicular to
both ~A and ~B and has magnitude equal to the product of the magnitudes of the two
vectors times sin of the angle between them.

Note that this leaves an ambiguity so far as the direction of the resulting vector is
concerned. However, given the definition of the cross product in terms of components,
this definition implies the ‘right-hand screw rule’

�
�A �B

�C

�C = �A � �B
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Magnetic Force
It is observed that two current carrying wires attract each other. In particular, if one of
them is held rigidly, a charged particle in its vicinity will accelerate, if it has a non-zero
velocity. these observations are consistent with the following hypothesis: Moving
charged particles exert a force in addition to the electrostatic force, which is
proportional to their velocities (and charges). A particle with charge q1 and moving with
velocity ~v1 exerts a force on another charged particle with charge q2 moving with
velocity ~v2 which is proportional to their velocities and falls off inversely with square of
the distance between the charges. Clearly, this force has to be a vector quantity,
constructed out of vectors ~v1,~v2 and~r where~r is the displacement from one charge to
another. The expression for this magnetic force is

~Fm =
µ0

4⇡
q1q2

r3
~v2 ⇥

�
~v1 ⇥~r

�

�v1

�v2

�r
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Lorentz Force

The total force exerted by a charge q1 on q2 is then

~F =
q1q2

4⇡✏0r3
~r +

µ0

4⇡
q1q2

r3
~v2 ⇥

�
~v1 ⇥~r

�

= q2

⇣
~E + ~v2 ⇥ ~B

⌘

where we have defined auxilliary quantities ~E and ~B (electric and magnetic fields
produced by charge q1 at the location of charge q2)

~E =
q1

4⇡✏0r3
~r

~B =
µ0

4⇡
q1

r3

�
~v1 ⇥~r

�

This is the so-called Lorentz Force. Note that as introduced here, there is nothing ‘real’
about ~E and ~B, they are just artificial constructions.
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The convenience of introducing the concept of electric and magnetic fields is that if
there are charges qi ; i = 1, 2..,N moving with velocities ~vi ; i = 1, 2, ..N in the vicinity of
a charge q moving with velocity ~v , the total force exerted by them (using the Principle
of Superposition of Forces we had discovered) on charge q can still be written down
this way

~F = q
⇣
~E + ~v ⇥ ~B

⌘

where

~E =
NX

i=1

qi

4⇡✏0r3
i

~ri

~B =
NX

i=1

µ0

4⇡
qi

r3
i

�
~vi ⇥~ri

�

and~ri is the displacement vector from qi to q.
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End of Newtonian Physics

It is easy to see that the Lorentz Force is not measured to be the same in all inertial
frames. Consider once again the force exerted by charge q1 on charge q2, as
measured in some inertial frame S

~F =
q1q2

4⇡✏0r3
~r +

µ0

4⇡
q1q2

r3
~v2 ⇥

�
~v1 ⇥~r

�

�V

�v1

�v2

�r
�v1

�

�v2
�

�v1
� = �v1 � �V

�v2
� = �v2 � �VS

S�

In frame S0, the force will be measured to be

~F 0 =
q1q2

4⇡✏0r3
~r +

µ0

4⇡
q1q2

r3
~v2

0 ⇥
⇣
~v1

0 ⇥~r
⌘
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It is easy to see that ~F 0 6= ~F . For definiteness, if ~v1 = ~v2 = 0, then ~v1
0 = ~v2

0 = �~V , so
that

~F =
q1q2

4⇡✏0r3
~r

but
~F 0 =

q1q2

4⇡✏0r3
~r +

µ0

4⇡
q1q2

r3
~V ⇥

⇣
~V ⇥~r

⌘

in which the magnetic term need not be zero. Then, the presence of a magnetic force
destrys Galilean Invariance of the interaction between thwo charged particles.
To discover what has gone wrong, let us compute the relative magnitudes of the
electrostatic and magnetic forces between two charged particles. Then

���~FM

���
���~FE

���
= µ0✏0

��~v2 ⇥
�
~v1 ⇥ r̂

���

If we numerically compute the product µ0✏0, it turns out to be given by

µ0✏0 =
1
c2

where c is the speed of light! The ratio of the two forces is then of the order of v2/c2

where v is the order of velocity of the charges. This is negigible, unless v ⇠ c.
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The sudden appearance of c in our theory (and the fact that our theory seems to be
inconsistent with a magnetic force) tells us that as long as we are dealing with speeds
which are much less than the speed of light (or, equivalently, in the limit c ! 1),
Newton’s Laws will be valid. Else, our theory is inconsistent with the Principle of
Relativity (Laws of Physics should appear the same in all Inertial Frames). What has
gone wrong if c is finite? Experimentally, the magnetic force is observed, so we cannot
ignore it. What needs to change is our view of transformations of position, velocity and
acceleration from one inertial frame to another. Experimentally, it is observed that the
speed of light is measured to be the same by observers, which is in contradiction with
the obvious fact that observers in relative motion will observe velocity of objects to be
different.
The resolution to this problem lies in a complete overhaul of our understanding of
space and time. This is the framework of the Theory of Relativity, which we will visit
later. For now, the following should be sufficient:
Since the speed of light is finite and observed to be the same by all observers, a
consequence of this ‘speed limit’ is that no information can travel faster than light. This
completely rules out the idea that objects exert forces on each other. For, if the force
between two charged particles at rest is given by the Coulomb Force (which depends
on the instantaneous displacement of the two charges), if we suddenly change the
position of one charge, since the displacement to the other charge changes, the force
will change instantaneously, changing the acceleration of the other charge, in effect
transmitting this influence instantaneously!
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Fields

If we cannot say any longer that objects exert forces on other objects, how are we to
explain the origin of acceleration, which somehow does depend on interaction with
other objects? The resolution to this problem lies in a change of point of view (and the
resulting dynamics): Charges particles interact not with each other, but Electric and
Magnetic fields, which cannot be treated to be artificial entities, but have to be thought
of as ‘real’ dynamical systems in themselves. The force experienced by a charged
particles is still given by the Lorentz force law

~F = q
⇣
~E + ~v ⇥ ~B

⌘

where ~E and ~B are the electric and magnetic fields at the location of the charge.
However, these fields are not ‘produced’ by the other charge, but are independent
dynamical entities which satisfy dynamical equations of their own (Maxwell Equations
of electrodynamics).

A. Gupta Classical Mechanics



Acceleration
Newton’s Laws

The Second Law: Interactions
The Third Law: Conservation of Momentum

Electromagnetic Interaction

The most important consequence of these equations is that if we disturb the first
charge, it disturbs the fields in its vicinity. This disturbance travels as a ripple in the
lectric and magnetic fields which fill space at the speed of light. when this ripple
reaches the other charge, it changes the force on it (and therefore its acceleration)

Static Charge Charge 
Disturbed

t = 0

t = T

c T

This is completely consistent with an extremely central principle in Physics: the
Principle of Locality. This principle states that the motion of an object can be influenced
only by other ‘objects’ in its immediate neighbourhood. In case of charged objects,
these other ‘objects’ happen to be electric and magnetic fields in their immediate
vicinity.
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Other Forces

What about (a host of other) forces?

M

�T

�Fg

M

�Fg

�N

M
�V

�Ffric

�V

�Fdrag

Tension

Normal Force

Friction 

Drag Force 

These are all effective macroscopic forces arising out of the Electromagnetic Force
between atoms (whose description needs to be modified according to the Laws of
Quantum Mechanics). Do we then need to know Quantum Mechanics to describe
these forces? Not if we are only interested in their effect at a macroscopic scale, not at
the scale of atoms (or smaller).
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Electromagnetic Interaction

Short Distance Forces

Electromagnetic force is a ‘long-distance’ force, since it does not have a range.
However, since at the level of atoms, Quantum effects become important, Planck’s
constant induces length scales which lead to a finite range interaction between neutral
atoms/molecules

r

V (r)

r0

V (r) � 1

2
k (r � r0)

2

In solids, we can often pretend that constituent atoms/molecules are point-like objects
connected by springs. This approximately accounts for elasticity of solids (though not
deformation or thermal expansion).
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Electromagnetic Interaction

Effective Macroscopic Forces

Tension in strings/ropes: Can be visualised as springs with a very large spring
constant (so that a small amount of stretching can result in an appreciable force).
Normal Force: Solid surfaes can be visualised as spring mattresses which are
deformed slightly when an object is pressed against them. This deformation gives
rise to a force perpendicular to the surface.
Friction: Macroscopic force arisng out of microscopic collisions with
atoms/molecules of the spring mattress. Energy is lost to these collisions which
results in the mattress vibrating, the vibrations thermalising into ‘heat energy’.
Drag Forces: Arise due to interaction with atoms/molecules of a fluid medium. So
long as the velocity of the object moving through the fluid is much smaller than the
velocity of sound in the medium, this force approximately has magnitude
proportional to the velocity of the object.
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An Illustration of ‘Lumping’ masses

�a
m M

m
�a

�f

M

�F

�f �
�a

�a
M + m

�F

`Lumping'

Applying Second Law to the two objects ‘lumped’ together

~F = (M + m) ~a

Applying Second Law to mass m
~f = m ~a

Applying Second Law to mass M

~F +~f 0 = M ~a

=) ~f 0 = M ~a � ~F

= M ~a � (M + m) ~a

= �m~a
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m

�f

M

��f

We then discover that ‘Force exerted by m on M is equal in magnitude but opposite in
direction’. This can easily be seen to be valid in general situations when objects are in
contact with each other (exerting Contact Forces ).
Have we discovered a LAw which is not fundamental but a consequence of the first two
laws?
No. We are not allowed to apply the first two Laws to extended objects. We can apply
them to only point-like objects, since only these can possess attributes such as
‘position’, ‘velocity’ and ‘acceleration’. When we try to extend them to objects with size
(and also ‘lump’ them together to create even bigger objects), we are inadvertently
assuming the validity of a third Law:

Third Law

Particles exert forces that are equal in magnitude but opposite in direction on each
other.
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Fundamental Forces and the Third Law

The Electrostatic force and the Gravitational force are clearly consistent with the Third
Law

q1 q2

q1 q2

�r12

�r21

�F12 =
q1q2

4��0

�r12

(r12)
3

�F21 =
q1q2

4��0

�r21

(r21)
3

�r12

�r21

�F21 = �Gm1m2

(r12)
3 �r12

�F12 = �Gm1m2

(r21)
3 �r21

m1 m2

m1 m1

Magnetic force violates the Third Law!

�v1

�v2

q1
q2�r12

q1 q2�r21

�F12 =
µ0

4�

q1q2

r3
12

�v2 � (�v1 � �r12)

= 0

�v1

�v2

�F21 =
µ0

4�

q1q2

r3
21

�v1 � (�v2 � �r21)

�= 0
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Momentum

What good is then the third ‘Law’?
If we rewrite the Second Law, we can discover an alternative to the Third Law, which is
believed to be a fundamental Law of Nature. the (total) force acting on a particle of
mass m can be rewritten as

~F = m~a

= m
d~v
dt

=
d
�
m ~v

�

dt

=
d~p
dt

where we define ~p = m ~v as momentum of the particle. The advantage of defining this
physical quantity is that if we assume that the Third Law is correct, it tells us that given
two or more particles, if we define the total momentum of the system as the vector sum
of momentum of all the particles, then this quantity is conserved, that is, does not
change with time, even though the overall motion of all the particles may be
complicated.
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Conservation of Momentum
Assume there are particles such that the force exerted by the i th particle on the j th

particle is ~Fij . Define the total momentum of the system as

~P =
X

i

~pi

Then

d~P
dt

=
X

i

d~pi

dt

=
X

i

X

j 6=i

~Fji

If the Third Law is correct, this is zero, with force terms cancelling in pairs. For
instance, for three particles, we get

d~P
dt

= ~F12 + ~F13 + ~F21 + ~F23 + ~F31 + ~F32

=
⇣
~F12 + ~F21

⌘
+
⇣
~F13 + ~F31

⌘
+
⇣
~F23 + ~F32

⌘

= 0
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Third Law (Again)

We can then restate the Third Law as follows

Third Law

Given a system of interacting particles, the total momentum of the system is conserved.

For a system of charged particles, clearly the total momentum of the system is not
conserved, since there are magnetic forces which do not cancel in action-reaction
pairs. What then is the point of rephrasing the Third Law in terms of momentum? What
is the point of defining momentum at all?

Fields Carry Momentum

Electric and Magnetic fields carry momentum. At any instant, the total momentum of
charged particles plus the fields is conserved.
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We need to treat the Thid Law of Motion as an approximation which is a good one so
long as the speed of particles is much smaller than the speed of light and the size of
objects is such that the time it would take light to travel across them is much smaller
than the duration of the experiment (which is usually the case). In all applications we
are interested in, this will be true. Then, the Third Law of Motion (“To every action there
is an equal and opposite reaction” ) and conservation of momentum are equivalent in
such situations. Note that the conservation of momentum is believed to be a true Law
of Nature, it is just that in such situations it will agree with the Third Law (which is not
strictly a Law of Nature).
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Newton’s Second Law as Differential Equations

Consider a particle of mass m moving under the influence of a force which depends on
the position and velocity of the particle. We can cast the Second Law (~F = d~p/dt) as
coupled differential equations

d~r
dt

=
1
m

~p

d~p
dt

= ~F
�
~r ,~p

�

Given position~r and momentum ~p at some instant t0, we can use these relations to
calculate them at any other instant through the following recursive algorithm

~r(t +�t) = ~r(t) +
1
m

~p(t) �t

~p(t +�t) = ~p(t) + ~F
⇣

~r(t), ~p(t)
⌘

�t
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To use this algorithm on a computer, we set up a Cartesian coordinate system. In this
coordinate system, these reduce to three pairs of coupled differential equations, one
pair for each coordinate direction

x(t +�t) = x(t) +
1
m

px (t) �t

px (t +�t) = px (t) + Fx [x(t), y(t), z(t), px (t), py (t), pz(t)] �t

y(t +�t) = y(t) +
1
m

py (t) �t

py (t +�t) = py (t) + Fy [x(t), y(t), z(t), px (t), py (t), pz(t)] �t

z(t +�t) = z(t) +
1
m

pz(t) �t

pz(t +�t) = pz(t) + Fz [x(t), y(t), z(t), px (t), py (t), pz(t)] �t

Given x(t0), y(t0), z(t0), px (t0), py (t0), pz(t0), we can use these recursively to calculate
x(t), y(t), z(t), px (t), py (t), pz(t) for any time t by dividing the interval T = t � t0 into N
‘small’ intervals �t = T/N. The smaller �t , the more accurate the result (of course,
more the number of calculations to be performed).
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Illustration: 1-D Harmonic Oscillator

1-D Harmonic Oscillator: Particle attracted towards a point with force proportional to
displacement from the point and directed towards it The coupled equations are

dx
dt

=
1
m

p

dp
dt

= �k x

Assume the following initial conditions: at t = 0, x0 = A, p0 = 0. There is a natural time
scale in the problem: T0 =

p
m/k . There is also a natural length scale, the initial

distance from the point of attraction, namely A. We measure time measured in units of
this fundamental time scale as ⌧ and position measured in units of this length scale as
x̃ . Then, x̃ = x/A and ⌧ = t/T0. Substituting these in the coupled equations, we get
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dx̃
d⌧

=
1

A
p

mk
p

1
A
p

mk

dp
d⌧

= �x̃

It is easy to see that the combination P = A
p

mk has dimension of momentum. then,
we can measure momentum in units of P, such that p̃ = p/P. Then, we get the
following coupled equations

dx̃
d⌧

= p̃

dp̃
d⌧

= �x̃

which we need to solve, given x̃(0) = 1 and p̃(0) = 0.
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A Conserved quantity

Note that the equations of motion predict that even though position and momentum
change with time, there is a certain function of position and momentum which does not
change with time, i.e., is Conserved

H(x̃ , p̃) =
1
2

p̃2 +
1
2

x̃2

To see that it is conserved, we compute its derivative with respect to time

dH
d⌧

=
1
2

dp̃2

d⌧
+

1
2

dx̃2

d⌧

= p̃
dp̃
d⌧

+ x̃
dx̃
d⌧

= p̃(�x̃) + x̃(p̃)

= 0

where we have used the equations of motion. The funciton H is proportional to the total
mechanical energy of the system.
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Naive Algoritm

Naively, we would use the following algorithm

x̃(⌧ +�⌧) = x̃(⌧) + p̃(⌧)�⌧

p̃(⌧ +�⌧) = p̃(⌧)� x̃(⌧)�⌧

with the starting condition x̃(0) = 1 and p̃(0) = 0. However, since �⌧ can never be
‘infinitesimal’, this procedure will introduce an error of the order of �⌧2 at every step.
Then, if the algorithm is carried out upto N steps (equivalently, upto time ⌧ = N�⌧ ),
the total error will be of the order N�⌧2 = ⌧ �⌧ which will increase liearly with ⌧ .
Then, the longer the duration for which the motion is considered, the larger the error.
Let us write a Python program for this algorithm and plot the position and momentum
as functions of time.
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Python Program for Naive Algorithm

from pylab import * ## Imports a plotting program.

########## Initialisation ###################################################
position = 1.0    ## Initial position
momentum = 0.0    ## Initial momentum
time = 0.0      
end_time = 20.0   ## Time upto which position and momentum are to be calculated.
N = 200           ## Number of time divisions
delta_t = end_time/N     ## Time increment
position_list = [position]  ## Creates a list of positions and populates the first entry
momentum_list = [momentum]  ## Creates a list of momenta and populates the first entry
time_list = [time]          ## Creates a list of time instants and populates the first entry

##########    Iterations in position and momentum ########################################
for i in range(0,N):

new_position = position + (momentum*delta_t) # Updates position
new_momentum = momentum - (position*delta_t) # Update momentum
position = new_position
momentum = new_momentum
time = time + delta_t
position_list.append(position)
momentum_list.append(momentum)
time_list.append(time)

#### Plotting the lists #############################################
xlabel('t')
ylabel('x,p)')
title('Naive Harmonic Oscillator')
plot(time_list,position_list,marker = 'o', label = 'x')
plot(time_list,momentum_list,marker = 's',label = 'p')
legend()
show()

1
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A good check on the accuracy of the algorithm will be to check if it keeps the energy
function H constant

from pylab import * ## Imports a plotting program.

########## Initialisation ###################################################
position = 1.0    ## Initial position
momentum = 0.0    ## Initial momentum
energy = (position*position)/2 + (momentum*momentum)/2 ## Initial energy
time = 0.0      
end_time = 20.0   ## Time upto which position and momentum are to be calculated.
N = 200           ## Number of time divisions
delta_t = end_time/N     ## Time increment
energy_list = [energy]
time_list = [time]          ## Creates a list of time instants and populates the first entry

##########    Iterations in position and momentum ########################################
for i in range(0,N):

new_position = position + (momentum*delta_t) # Updates position
new_momentum = momentum - (position*delta_t) # Update momentum
position = new_position
momentum = new_momentum
energy = (position*position)/2 + (momentum*momentum)/2
time = time + delta_t
energy_list.append(energy)
time_list.append(time)

#### Plotting the lists #############################################
xlabel('t')
ylabel('Energy')
title('Naive Harmonic Oscillator - Energy')
plot(time_list,energy_list,marker = 'o')
show()

1
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Problem with Naive Algorithm

Taylor Series:

f (x0 + a) = f (x0) + a f 0(x0) +
a2

2!
f 00(x0) +

a3

3!
f 000(x0) + ....

Then

x(t +�t) = x(t) +�t ẋ(t) +
�t2

2
ẍ(t) + ...

p(t +�t) = p(t) +�t ṗ(t) +
�t2

2
p̈(t) + ...

In the naive algorithm, we ignore terms O(�t2) and higher in expansions for position
and momentum, such that

x(t +�t) = x(t) +�t ẋ(t) +O(�t2)

p(t +�t) = p(t) +�t ṗ(t) +O(�t2)

This is why we accumulate an error of O(�t2) in every step.
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Leapfrog Algorithm

The ‘Leapfrog’ Algorithm:

This algorithm is based on the observation

f (t +�t) = f (t) +�t ḟ (t +�t/2) +O(�t3)

This follows since
ḟ (t +�t/2) = ḟ (t) +

�t
2

f̈ (t) +O(�t2)

so that

f (t) +�t ḟ (t +�t/2) +O(�t3) = f (t) +�t
⇢

ḟ (t) +
�t
2

f̈ (t) +O(�t2)

�
+O(�t3)

= f (t) +�t ḟ (t) +
�t2

2
f̈ (t) +O(�t3)

= f (t +�t) +O(�t3)

A. Gupta Classical Mechanics



Newton’s Laws on the Computer The Algorithm

We exploit this algorithm as follows for the Harmonic Oscillator: We divide the total
time interval into N slices of width �t as before. Then, using the new approximation,
the position at instant t +�t is given as

x̃(⌧ +�⌧) = x̃(⌧) +�⌧ ˙̃x(⌧ +�⌧/2)
= x̃(⌧) +�⌧ p̃(⌧ +�⌧/2)

Then, the position at ⌧ +�⌧ depends on momentum at ⌧ +�⌧/2. Say, we know the
momentum at ⌧ +�⌧/2. Then, we can calculate it at ⌧ + 3�⌧/2 using the same
approximation

p̃(⌧ + 3�⌧/2) = p̃(⌧ +�⌧/2) +�⌧ ˙̃p(⌧ +�⌧)

= p̃(⌧ +�⌧/2)��⌧ x̃(⌧ +�⌧)

This now allows us to calculate the position at ⌧ + 2�⌧ which then allows us to
calculate the momentum at ⌧ + 5�⌧/2 and so on. At the start of the algorithm, we are
given x̃(⌧0) and p̃(⌧0). We first ‘seed’ the momentum at ⌧ = ⌧0 +�⌧/2 using the
original approximation

p̃(⌧0 +�⌧/2) = p̃(⌧0) +�⌧/2 ˙̃p(⌧0) +O(�⌧2)

= p̃(⌧0)��⌧/2 x̃(⌧0) +O(�⌧2)
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Note that even though we have introduced an error here of O(�⌧2), this is introduced
only once and does not accumulate as before. We can now evaluate (using the above
algorithm recursively) the position at the final instant ⌧ and the momentum at instant
⌧ ��⌧/2. We can once more use the original approximation to ‘push’ this momentum
upto instant ⌧

p̃(⌧) = p̃(⌧ ��⌧/2) +�⌧/2 ˙̃p(⌧ ��⌧) +O(�⌧2)

= p̃(⌧ ��⌧/2)��⌧/2 x̃(⌧ ��⌧) +O(�⌧2)

which once again introduces error of order O(�⌧2). Then, we have introduced this
error only twice.

�0

�0 + ��/2

�0 + ��

�0 + 3��/2

�0 + 2��

�0 + 5��/2

� � ��

� � ��/2

�

�0 �

x0

p0 p1/2 p3/2 p5/2 pN�1/2 pN

x1 x2 xN�1 xN
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Improved Harmonic Oscillator Program

from pylab import * ## Imports a plotting program.

########## Initialisation ###################################################
position = 1.0    ## Initial position
initial_momentum = 0.0    ## Initial momentum
time = 0.0      
end_time = 20.0   ## Time upto which position and momentum are to be calculated.
N = 200           ## Number of time divisions
delta_t = end_time/N     ## Time increment
momentum = initial_momentum - (delta_t*position)/2 ## `Seeded' momentum
energy = (position*position)/2 + (momentum*momentum)/2 ## Initial Energy
position_list = [position]  ## Creates a list of positions and populates the first entry
momentum_list = [momentum]  ## Creates a list of momenta and populates the first entry
energy_list = [energy]
time_list = [time]          ## Creates a list of time instants and populates the first entry

##########    Iterations in position and momentum ########################################
for i in range(0,N):

new_position = position + (momentum*delta_t) # Updates position
new_momentum = momentum - (new_position*delta_t) # Updates momentum. Note that these position and momentum are at different instants (staggered).
position = new_position
momentum = new_momentum  ## This is not at the same instant at the position but at time delta_t later.
temp_position = position + (delta_t*momentum)/2 ## This pushes the position to the same instant at which momentum has been calculated.
energy = (temp_position*temp_position)/2 + (momentum*momentum)/2 ## Pushing forward the position enables us to calculate energy.
time = time + delta_t
position_list.append(position)
momentum_list.append(momentum)
energy_list.append(energy)
time_list.append(time)

#### Plotting the lists #############################################
xlabel('t')
ylabel('x,p,E')
title('Leapfrog Harmonic Oscillator')
plot(time_list,position_list,marker = '.', label = 'x')
plot(time_list,momentum_list,marker = '.',label = 'p')
plot(time_list,energy_list,marker = '.',label = 'E')
legend()
show()

1
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Planetary Motion

Consider a massive spherical object (such as the Sun) with mass M with its centre at
the origin, and an object of mass m moving under its gravitational influence. We
assume that M >> m and assume that the massive object is at rest. The equation of
motion of the object of mass m will be

m
d2~r
dt2 = �GMm

r3
~r

where~r is the position vector of the object relative to the massive object. The mass m
of the object cancels on both sides of the equation, so that we have

d2~r
dt2 = �GM

r3
~r

We write this as coupled equations

d~r
dt

= ~v

d~v
dt

= �GM
r3

~r
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There are two conserved quantities, proportional to the energy and angular momentum
of the object

E =
1
2
~v2 � GM

r
and

~L = ~r ⇥ ~v

Since ~L is a constant vector, both its magnitude and direction are constant. In
particular, its direction is perpendicular to both~r and ~v , so that the motion of the object
lies in a plane containing these vectors (the plane perpendicular to ~L). We can
therefore focus our attention to this plane only. We set up the following coordinate
system

m

M
x

y

r0

�v0 t = 0

�r(t)

�v(t)
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There is no natural length or time scale in the problem, so we have to rely on the initial
conditions to generate these. A natural length scale is the distance r0 of the object from
the centre at t = 0. A time scale can be generated as follows: Imagine that the initial
velocity ~v0 is such that the object moves along a circle with uniform speed. This will
happen when

v2
0

r0
=

GM
r2
0

=) v0 =

s
GM
r0

Then a natural time scale is the time it would take the object to move once around the
orbit. We take a time scale proportional to this as

T0 =
r0

v0
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Expressing position in units of r0, time in units of T0 and velocity in units of v0, we get
(for convenience we use the same symbols for the dimensionaless quantities as the
original ones)

d~r
dt

= ~v

d~v
dt

= � 1
r3

~r

In the given coordinate system, these equations will be

dx
dt

= vx

dvx

dt
= � x

r3

dy
dt

= vy

dvy

dt
= � y

r3
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Centre of Mass

Consider a non-relativistic system of particles which interact with forces that satisfy the
Third Law

~
F

ij

+ ~
F

ji

= 0

where ~
F

ij

is the force exerted by the i

th particle on the j

th particle. In absence of
external forces, the total momentum of the system defined as

~
P =

X

i

~
p

i

is conserved

d

~
P

dt

=
X

i

d

~
p

i

dt

=
X

i

X

j 6=i

~
F

ji

= 0

since the forces between particles cancel in pairs.
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Centre of Mass

This reminds us of the fact that the momentum of a single particle in absence of an
external force is conserved. Then, the concept of momentum as an additive property
allows us to ‘scale’ the Second Law so that its form remains unchanged for an
extended system, provided we ignore the internal forces. Let ~F ext

i

be the external force
acting on the i

th particle. The total force acting on it is then

~
F

total

i

= ~
F

ext

i

+
X

j 6=i

~
F

ji

Then, is conserved

d

~
P

dt

=
X

i

d

~
p

i

dt

=
X

i

0

@

X

j 6=i

~
F

ji

+ ~
F

ext

i

1

A

=
X

i

~
F

ext

i
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Then we get
d

~
P

dt

= ~
F

ext

where ~
F

ext =
P

i

~
F

ext

i

is the total external force acting on the system. This formally
resembles the form of the Second Law for a sinle particle. We can extend the analogy
further be defining a ‘velocity’ ~V

cm

such that

~
P = M

~
V

cm

such that
~
F

ext = M

d

~
V

cm

dt
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One can further stretch the analogy by trying to imagine a ‘particle’ which would
possess of this ‘velocity’. This can be drawn from the definition of ~V

cm

~
V

cm

=
1
M

~
P

=
1
M

X

i

m

i

~
v

i

=
1
M

X

i

m

i

d

~
r

i

dt

=
1
M

d

dt

 

X

i

m

i

~
r

i

!

=
d

~
R

cm

dt

where
~
R

cm

=

P

i

m

i

~
r

i

M
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This motivate us to visualise a ‘particle’ of mass M and position ~
R

cm

. In general, none
of the particles of the system is physically located at this ‘position’. However, it is useful
to visualise an imaginary particle of mass M located at ~R

cm

. This point in space is
called the Centre of Mass. The real advantage of this visualisation is that the generally
complicated motion of the system of particles can be visualised as a combination of
motion of centre of mass (under the influence of the total external force) and motion of
the particles about the center of mass.

The Centre of Mass Frame

The CM frame (or zero momentum frame) is a frame of reference in which the centre of
mass is at rest.

A. Gupta Classical Mechanics



System of Particles Centre of Mass

Centre of Mass of Two Particles

The position of the CM of two particles is easily seen to lie along the line joining them,
between the two masses. This follows from

~
R

cm

= ~
r1 +

m2

m1 + m2
~
r

Since m2/(m1 + m2) < 1, clearly the vector m2/(m1 + m2)~r will be directed from m1 to
m2 and will have length less than that of the distance between them. Then, it is easy to
see from the geometry of addition of displacements that ~R

cm

will lie between the
positions of the two masses

~r

m1

m2

�r1

�r2

�
m2

m1 + m2

�
�r

�Rcm
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Properties of CM

The position of the centre of mass satisfies the ‘scaling’ property.

Consider a system consisting of two subsystems A and B of masses M

A

and M

B

respectively. Let the position of their CMs be ~
R

A

and ~
R

B

. Then, it is easy to see
that the position of the CM of the total system satisfies

~
R

cm

=
M

A

~
R

A

+ M

B

~
R

B

M

A

+ M

B

The CM of a system lies on every plane/axis/point of symmetry of the system

An plane of symmetry of a system is one about which the system ‘looks the
same’. That is, if one were to pretend the plane was a mirror (mirrored on both
faces), the system would look the same.
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Example: CM of a uniform rod of length l . Since the centre of the rod is a point of
symmetry, the CM is right there!
Example: A more complicated system

M

m

Axis of Symmetry

�r

�R

�r

�RM

m

�Rcm

Example: CM of three masses arranged at the vertices of an isoceles triangle

M

mm a

b

M

2m

�b

�Rcm =

�
M

M + 2m

�
�b
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Note: The position of the CM relative to the particles of the system is fixed. To compute
this position, any suitable origin ocan be chosen to measure position vectors. For more
complicated distributions, it is useful to explicitly set up a coordinate system such that

~
r

i

= x

i

î + y

i

ĵ + z

i

k̂

~
R

cm

= X

cm

î + Y

cm

ĵ + Z

cm

k̂

Then, we get

X

cm

=

P

i

m

i

x

i

M

Y

cm

=

P

i

m

i

y

i

M

Z

cm

=

P

i

m

i

z

i

M
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CM of Continuous Distributions

Example: CM of a rod with linear mass density ⇢(x).
Let us choose a convenient coordinate system as follows

O
l

�(x) =
dm

dx

x

y

x x + dx

X

cm

=
X

x

dm x

=
X

x

dm

dx

dx x

=
X

x

⇢(x) x dx

!
Z

l

0
⇢(x) x dx
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General Continuous Mass Distributions

O

x

y

z

x

y

z

dx
dy

dz

�r

�Rcm

We again set up a coordinate system. Visualising the mass distribution to be divided
into infinitesimal cubes (with edges along the axes) of sides dx , dy , dz, the mass
contained in such a cube located at point (x , y , z) is

dm = ⇢(x , y , z)dxdydz

Then

X

cm

=
X

x,y,z

dm(x , y , z) x

=
X

x,y,z

⇢(x , y , z) x dxdydz

!
Z Z Z

dxdydz ⇢(x , y , z) x
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Similarly,

Y

cm

=

Z Z Z

dxdydz ⇢(x , y , z) y

Z

cm

=

Z Z Z

dxdydz ⇢(x , y , z) z
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Illustration: Two Particles

Consider a system of two particles (of masses m1 and m2) interacting with a force that
is central, that is, depends only on their separation and their relative displacement

~
F12 = f (r)~r

where~
r = ~

r2 �~
r1 is the relative displacement of the two particles (taken for convention

from particle 1 to particle 2). Assuming there are no external forces acting on the
system, the total momentum of the system will be conserved and the centre of mass
will move with a uniform velocity (equal to the total momentum divided by the total
mass of the system). The equations of motion for the two particles will be

m1
d

2~
r1

dt

2 = ~
F21

= �f (r)~r

m2
d

2~
r2

dt

2 = ~
F12

= f (r)~r
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We can eliminate the position vectors~r1 and~
r2 in favor of the position vector of the CM

~
R

cm

and the relative displacement~r , since

~
R

cm

=
m1~r1 + m2~r2

m1 + m2
~
r = ~

r2 �~
r1

This gives

~
r1 = ~

R

cm

�
m2

m1 + m2
~
r

~
r2 = ~

R

cm

+
m1

m1 + m2
~
r

Substituting these in (either) equations for motion (and observing that d

2~
R

cm

/dt

2 = 0,
we get

✓

m1m2

m1 + m2

◆

d

2~
r

dt

2 = f (r)~r

A. Gupta Classical Mechanics



System of Particles Centre of Mass

We write this as

µ
d

2~
r

dt

2 = ~
F

where
µ =

m1m2

m1 + m2

is called the reduced mass of the system and

~
F = f (r)~r

is the internal force of interaction. This resembles the equation of motion of a single

particle of mass µ under the influence of force ~
F .
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Example: Two masses m1 and m2 connected by a spring, constrained to move along a
straight line. In a given coordinate system, let the position of the masses at t = 0 be x

a

and x

b

and their velocity v

a

and v

b

O

xa xb

va vb

xcm

vcm

Given this, we need to determine the motion of the two masses as a function of time.
The velocity of the CM will be

v

cm

=
m1v

a

+ m2v

b

m1 + m2

and this will be constant. At t = 0, the position coordinate of the CM will be

x

cm

(0) =
m1x

a

+ m2x

b

m1 + m2

Then, the position of the CM will change with time as

x

cm

(t) = x

cm

(0) + v

cm

t
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The position coordinates of the two masses at time t will be given by

x1(t) = x

cm

(t)�
m2

m1 + m2
x(t)

x2(t) = x

cm

(t) +
m1

m1 + m2
x(t)

where x(t) = x2(t)� x1(t) and satisfies the equation

µ
d

2
x

dt

2 = �kx

where k is the spring constant and µ is the reduced mass. The general solution to this
equation is

x(t) = A cos!t + B sin!t

where ! =
p

k/µ. The constants A and B are easilyn determined using the initial
conditions x(0) = x

b

� x

a

and v(0) = dx/dt |
t=0 = v

b

� v

a

. Thus the general motion of
the system is easily determined.
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Two Body Gravitational Attraction

We analyse the motion (under gravitation) of two masses in the CM frame, so that the
CM is at rest, and we choose it as origin of coordinates. At a given instant of time, the
positions and velocities of the two masses are given, and the problem is to determine
the trjectory of the particles. The equations of motion of the two masses are

m1
d

2~
r1

dt

2 =
Gm1m2

r

3
~
r

m2
d

2~
r2

dt

2 = �
Gm1m2

r

3
~
r

where~
r = ~

r2 �~
r1. Since we have chosen the origin at the location of the CM, we get

~
r1 = �

m2

m1 + m2
~
r

~
r2 =

m1

m1 + m2
~
r

such that

µ
d

2~
r

dt

2 = �
Gm1m2

r

3
~
r
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This reduces to
d

2~
r

dt

2 = �
G (m1 + m2)

r

3
~
r

which is the equation of a particle in the presence of a gravitating object of mass
M = m1 + m2.

Detection of Exoplanets

A planet of mass m orbiting a distant star of mass M >> m is difficult to detect
because the star’s brighness will eclipse the planet. However, the fact that it is a
two-body system implies that the centre of the star will move in an elliptical orbit (of
dimensions much smaller than that of the planet’s). If we can detect this motion of the
star, not only can we predict that there is a planet, but we can also estimate its mass
and orbit (provided we know the mass of the star).
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Let us choose to represent the dynamics of the vector~r in plane polar coordinates.
Then,

d

2~
r

dt

2 =

 

d

2
r

dt

2 � r

✓

d✓

dt

◆2
!

r̂ +

 

r

d

2✓

dt

2 + 2
dr

dt

d✓

dt

!

✓̂

Equating this with the force, we get

d

2
r

dt

2 � r

✓

d✓

dt

◆2
= �

G (m1 + m2)

r

2

r

d

2✓

dt

2 + 2
dr

dt

d✓

dt

= 0

Since the equation for~r is the same as that of a particle under the influence of the
gravitational influence of mass M = m1 + m2, therefore we know that the ‘angular
momentum’ vector ~L = ~

r ⇥ ~
v is conserved, where ~

v = d

~
r/dt

d

~
L

dt

=
d

dt

�

~
r ⇥ ~

v

�

=

✓

d

~
r

dt

⇥ ~
v

◆

+

✓

~
r ⇥

d

~
v

dt

◆

=
�

~
v ⇥ ~

v

�

�
G (m1 + m2)

r

3

�

~
r ⇥~

r

�

= 0
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The direction of this vector is perpendicular to the plane of the orbit. To determine its
(conserved) magnitude, we recall that ~v = ṙ r̂ + r ✓̇ ✓̂. Then,

~
L = ~

r ⇥ ~
v

= r r̂ ⇥
⇣

ṙ r̂ + r ✓̇ ✓̂
⌘

= (r2 ✓̇) r̂ ⇥ ✓̂

Since r̂ and ✓̂ are perpendicular to each other (and each has unit magnitude), it follows
that the magnitude of ~L is

L = r

2 ✓̇

L will be conserved and is fixed by the initial conditions. Then, we can express
✓̇ = L/r

2, so that the differential equation for r becomes

r̈ =
L

2

r

3 �
G (m1 + m2)

r

2

We can right the right hand side as derivative of a function with respect to r

r̈ =
dg

dr

where

g(r) =
�L

2

2r

2 +
GM

r
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Multiplying both sides with ṙ , we get

ṙ r̈ =
dg

dr

ṙ

It is easy to check that the left hand side is the derivative of ṙ

2/2 and the right hand
side is dg/dt . Then, we get

d

dt

ṙ

2

2
=

dg

dt

which tells us that
d

dt

 

ṙ

2

2
� g(r)

!

= 0

Therefore, we see that in addition to the angular momentum, we have another
conserved quantity (which we will see is the mechanical energy of the two particle
system)

E =
1
2

ṙ

2 +
L

2

2r

2 �
GM

r

It is easily checked that the quantity ṙ

2/2 + L

2/2r

2 is just ~v2/2, which is just the ’kinetic
energy’.
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We will see that the solution to the radial equation yields different kinds of orbits for the
two masses, depending on the values of E and L. In particular, for special initial
condition, each mass will execute a circular orbit about the centre of mass. this will
clearly happen when r does not change. Setting r̈ = 0 in the radial equation of motion,
we get

L

2

r

3
0

=
GM

r

2
0

=) L =
p

G M r0

For a circular orbit, the energy of the system is given by

E =
L

2

2r

2
0
�

GM

r0

= �
GM

2r0
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With the origin at the CM, the position vectors of the two masses are

~
r1 = �

m2

m1 + m2
~
r

~
r2 =

m1

m1 + m2
~
r

For initial condition such that r = r0 is constant, clearly r1 and r2 will be constant, so
that the two masses will move in circular orbits about the CM. Further, since the CM is
along the line joining them, they will move in their orbits with the same angular velocity
✓̇ = L/r

2
0 and therefore they will revolve about the common centre of mass with the

same time period.
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Variable Mass Systems

A rocket of mass M is moving with velocity ~
V . At a certain instant of time it ejects a

payload of mass m with velocity ~
u

rel

relative to itself. What is the velocity of the rocket
after this?

�V

�V �

�v

Let the velocity of the rocket after ejection be ~
V

0. Then, in the frame in which the rocket
had initial velocity ~

V , the velocity of the payload will be

~
v = ~

V

0 + ~
u

rel

The initial momentum of the system was ~
P = M

~
V . The final momentum of the system

will be
~
P

0 = m

~
v + (M � m)~V 0
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Assuming the ejection takes very little time so that any external force (such as gravity)
has very little time to change the total momentum of the system (in comparison to the
momentum of either object), the momentum of the system will be (approximately)
conserved. Then, ~

P

0 = ~
P (in this approximation), so that

M

~
V = m(~V 0 + ~

u

rel

) + (M � m)~V 0

This can be solved for ~V 0 to give

~
V

0 = ~
V �

m

M

~
u

rel
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Rocket Motion

A rocket flies by ejecting ‘hot’, energetic matter (gases, typically). Since these are
ejected out with some relative velocity, they carry away momentum, changing the
momentum of the rocket.
Let the mass of the rocket at instant t be M(t) and its velocity ~

V (t). In time �t , it ejects
out mass �m of hot gases with relative velocity ~

u

r

el . In addition, let some external
force (typically the force due to gravity) ~F act on the rocket, and at time t +�t , let its
velocity be ~

V (t) +�~
V . Then, the change in momentum of the rocket in time �t will be

�~
P = ~

P(t +�t)� ~
P(t)

=
n

�m

⇣

~
V (t) +�~

V + ~
u

rel

⌘

+ (M(t)��m)
⇣

~
V (t) +�~

V

⌘o

� M(t)~V (t)

= �m

~
u

rel

+ M(t)�~
V

where terms of the type �m�~
V have been dropped since they are second order in

infinitesimal quantities.
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Then the rate of change of momentum of the system is

d

~
P

dt

= lim
�t!0

�~
P

�t

= lim
�t!0

�m

�t

~
u

rel

+ M(t)
�~

V

�t

=
dm

dt

~
u

rel

+ M(t)
d

~
V

dt

Since the total mass is conserved, the mass of the fuel ejected in time �t is equal to
the decrease in mass of the rocket in the same interval. That is, �m = ��M where
�M is the change in mass of the rocket in time �t . Then,

d

~
P

dt

= �
dM

dt

~
u

rel

+ M(t)
d

~
V

dt

Since this is equal to the external force acting on the system, we get the ‘Rocket
Equation’

Rocket Equation

M(t)
d

~
V

dt

�
dM

dt

~
u

rel

= ~
F
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Rocket in Free Space

Consider a rocket far away from gravitating objects. Then, ~F = 0 and the rocket
equation becomes

M(t)
d

~
V

dt

=
dM

dt

~
u

rel

Assuming that the gases are ejected out in a direction along the length of the rocket,
the motion of the rocket will be rectilinear. Choosing coordinates such that the motion
of the rocket is along the x-direction, we have ~

V = V î and ~
u

rel

= �u where we
assume that the gases are ejcted with the same relative speed u. Then, we have

M(t)
dV

dt

=
dM

dt

u

=) dV =
dM

M

u

where dV is the change in speed of the rocket in time dt and dM is the change in its
mass.
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Integrating from an instant when its speed was V0 and its mass was M0 to an instant t

when its speed is V (t) and mass is M(t), we get

Z

V (t)

V0

dV = u

Z

M(t)

M0

dM

M

which gives

Rocket in Free Space

V (t)� V0 = u log
✓

M(t)

M0

◆

This equation has an interesting implication: so long as the fuel is burnt up and ejected
with the same relative velocity, the maximum increase in speed of a rocket depends
only on the total mass of the fuel ejected, and not on the rate at which it is ejected. Of
course, the total time to achieve this speed will depend on this rate.
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Rocket at Time of Launch

At the moment a rocket is launched, it is under the influence of the Earth’s gravitational
field (assumed uniform here). Setting up a coordinate system with the vertical direction
(along which we assumed the rocket is launched) as the x-direction, the rocket
equation reduces to

M(t)
dV

dt

�
dM

dt

u = �M(t) g

This reduces to
dV � u

dM

M

= �g dt

for the infinitesimal duration of time dt . Integrating once again from t = 0 (at which the
speed of the rocket is zero) to t , we get

Z

V (t)

0
dV � u

Z

M(t)

M0

dM

M

= �g

Z

t

0
dt

which gives

Rocket at Launch

V (t) = u log
✓

M(t)

M0

◆

� g t
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It is clear that the maximum possible speed that the rocket can acquire is limited now
by the rate at which the fuel is ejected. To minimise the effect of gravity, the duration t

needs to be minimised. That is, the fuel needs to be expended as fast as possible for
an effective launch.
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Conservation of Energy

Consider a system of two particles constrained to move along a straight line interacting
with a force that depends only on their relative separation. The equations of motion for
the two particles will be then

m1
dv1

dt

= f (x)

m2
dv2

dt

= �f (x)

where x = x2 � x1, F12 = �F21 = f (x). Multiplying the first equation with v1 and the
second with v2 and adding, we get

m1v1
dv1

dt

+ m2v2
dv2

dt

= f (x) (v1 � v2)

= �f (x)
dx

dt

where v2 � v1 = d(x2 � x1)/dt = dx/dt .
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We can always find a function U(x) such that

f (x) =
dU(x)

dx

Observing that

v1
dv1

dt

=
1
2

dv

2
1

dt

v2
dv2

dt

=
1
2

dv

2
2

dt

we get

d

dt

✓
1
2

m1v

2
1 +

1
2

m2v

2
2

◆
= �

dU

dx

dx

dt

= �
dU

dt
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This allows us to define a quantity E (which we call energy )

E =
1
2

m1v

2
1 +

1
2

m2v

2
2 + U(x2 � x1)

which is conserved

dE

dt

= 0

The quantity

K =
1
2

m1v

2
1 +

1
2

m2v

2
2

is called the Kinetic energy of the system and the quantity U(x2 � x1) is called the
Potential Energy of the system. The Kinetic Energy of the system is by virtue of its
motion and the potential energy by virtue of the relative positions of the particles. We
have already observed that the total momentum of this system is conserved, where

P = m1v1 + m2v2

Then, we have two conserved quantities.
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Now, assume that one of the particles is much more massive compared with the other,
say, m1 >> m2. Assume that the CM is at rest (we are in such an inertial frame). Then
P = 0 and

v1 = �
m2

m1
v2

⇡ 0

Since the CM will lie approximately at the location of the massive particle, let us
choose the origin at the CM. Then, x2 = x and v2 = dx/dt . The total energy of the
system now becomes

E =
1
2

m1v

2
1 +

1
2

m2v

2
2 + U(x2 � x1)

⇡
1
2

m2v

2
2 + U(x2)

where the force experienced by m2 is

F2 = �f (x)

= �
dU

dx

= �
dU

dx2
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Since the dynamics of m1 is irrelevant (its position approximately does not change with
time), effectively, we can attribute the energy E to m2 only, so that we say that the
energy of m2 is conserved. In such a situation, we can take an equivalent point of view.
We can say that m1 exerts a position dependent force on m2, that is, one that depends
only on the position of m2, which can therefore be written as the derivative of a
Potential Energy function

F (x) = �
dU(x)

dx

where x is the position of m2 (relative to the unchanging position of m1). Then, the
Second Law of motion applied to m2 is

m

dv

dt

= F (x)

= �
dU

dx
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Multiplying both sides with v

F (x)
dx

dt

= mv

dv

dt

In an interval dt , we then have

F (x) dx = m v dv

Integrating from time t1 (when position is x1 and velocity v1) to time t2 (when position is
x2 and velocity v2)

Z
x2

x1

dx F (x) =

Z
v2

v1

m v dv

=
m

2

Z
v2

v1

d

⇣
v

2
⌘

=
1
2

m v

2
2 �

1
2

m v

2
1
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The integral

W =

Z
x2

x1

dx F

is called the Work done by force F on the prticle as it moves from x1 to x1. Note that
even if the force on the particle in not just a function of position (and depends on its
velocity, time, etc.), we still define this integrtal as Work. Then, the above result is
called The Work-energy Theorem, which says that the work done by a force on a
particle equals the change in its kinetic energy. Note that this result is valid even if the
force acting on the particle is not a function of position alone, and is simply a
consequence of the Second Law of Motion. However, if the force on the particle is a
function of its position, the Work done by the force is seen to be equal to (minus) the
change in the potential energy function

Z
x2

x1

dx F (x) = �
Z

x2

x1

dx

dU

dx

= ��
Z

x2

x1

dU

= � (U(x2)� U(x1))
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Combining this result with th Work-Energy theorem, we recover the result for
conservation of energy

1
2

m v

2
2 �

1
2

m v

2
1 = � (U(x2)� U(x1))

=)
1
2

m v

2
2 + U(x2) =

1
2

m v

2
1 + U(x1)

Let us now go to the three-dimensional situation where the force between the two
particles is of the form

~
F12 = �~

F21 = f (r) r̂

where r is the (instantaneous) distance between the two particles and~
r = ~

r2 �~
r1 is the

relative displacement vector. The unit vector r̂ is

r̂ =

✓
1
r

◆
~
r
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The equations of motion for the two particles are

m1
d

~
v1

dt

= f (r) r̂

m2
d

~
v2

dt

= �f (r) r̂

Taking the dot product of the first equation with ~
v1, the second equation with ~

v2 and
adding, we get

m1~v1 ·
d

~
v1

dt

+ m2~v2
d

~
v2

dt

= f (r)
�
~
v1 � ~

v2
�
· r̂

= �f (r) r̂ ·
d

~
r

dt

where ~
v2 � ~

v1 = d(~r2 �~
r1)/dt = d

~
r/dt . We use the result

d

dt

⇣
~
A · ~A

⌘
= 2~A ·

d

~
A

dt
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Then the left hand side of the equation is just dK/dt where we have defined

K =
1
2

m1~v1 · ~v1 +
1
2

m2~v2 · ~v2

=
1
2

m1~v
2
1 +

1
2

m2~v
2
2

as the total Kinetic Energy of the system. We can always find a function U(r) such that

f (r) =
dU

dr

Then the right hand side of the equation becomes

�f (r) r̂ ·
d

~
r

dt

= �
dU

dr

r̂ ·
d

~
r

dt

= �~rU ·
d

~
r

dt

= �
dU

dt
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Then, we get

dK

dt

= �
dU

dt

=)
dE

dt

= 0

where
E =

1
2

m1~v
2
1 +

1
2

m2~v
2
2 + U(r)

Then E , a conserved quantity, is identified as the total Energy of the system. As before,
the total momentum of the system

~
P = m1~v1 + m2~v2

is conserved in addition to energy.
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As before, if one of the particles is very massive compared with the other (m1 >> m2)
then in the CM frame, ~v1 ⇡ 0 so that the dynamics of the massive particle are
irrelevant. In this approximation, choosing the origin at the CM (the location of the
massive particle), the total energy of the system is

E =
1
2

m2~v
2
2 + U(r2)

where~
r2 is the position vector of m2. The force experienced by m2 is

~
F2 = �f (r2)r̂2

= �
dU

dr2
r̂2

= �~r2U(r2)
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As before, since the dynamics of m1 are irrelevant, we can take the following point of
view: mass m2 moves under the influence of m1 (whose position is stationary) such
that the equation of motion is

m

d

~
v

dt

= ~
F

= �~rU(r)

where we have dropped the subscript 2. Clearly ~
F is only a function of the position~

r of
the particle. We now define the Work done by

~
F on the particle during its motion from

time t1 to t2 as follows: during this interval, the particle follows a trajectory. We divide
the duration t2 � t1 into N intervals of size �t . Let d

~
r be the infinitesimal displacement

of the particle from instant t to t +�t

�r(t) �r(t + �t)

d�r

�F
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Let the force acting on the particle when it is located at~r be ~
F . We take the dot product

of this force with the infinitesimal displacemnt at every instant t

n

= t

i

+ n�t and add up
the contributions. The Work done by the force is this sum in the limit N ! 1

W =
N�1X

n=0

~
F

�
~
r

n

�
· d

~
r

=

Z ~
r

f

~
r

i

~
F

�
~
r

�
· d

~
r
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Using the second Law of Motion, we get

W =

Z ~
r

f

~
r

i

~
F

�
~
r

�
· d

~
r

= m

Z ~
r

f

~
r

i

d

~
v

dt

· d

~
r

= m

Z ~
r

f

~
r

i

d

~
v

dt

·
d

~
r

dt

dt

= m

Z
t

f

t

i

d

~
v

dt

· ~vdt

=
1
2

m

Z
t

f

t

i

d

dt

�
~
v · ~v

�
dt

=
1
2

m

Z
t

f

t

i

d

dt

⇣
~
v

2
⌘

dt

=
1
2

m

⇣
~
v

2
2 � ~

v

2
1

⌘

=
1
2

m

~
v

2
2 �

1
2

m

~
v

2
1

= K2 � K1
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This is the Work-Energy Theorem, and is valid irrespective of whether the external
force depends on position or not. Coming back to the example of a particle under the
influence of force due to a much more massive particle (a force which is central), we
know that

~
F = �~rU(r)

Then, the Work done by the force is also equal to

W =

Z ~
r

f

~
r

i

~
F

�
~
r

�
· d

~
r

= �
Z ~

r

f

~
r

i

~rU(r) · d

~
r

= �
Z ~

r

f

~
r

i

dU

dr

r̂ · d

~
r

�r(t) �r(t + �t)

d�r

�F

dr r̂
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The illustration shows that the dot product r̂ · d

~
r is just equal to dr (the change in the

radial coordinate of the particle as it moves from~
r to~

r + d

~
r . Then, the work is given by

W = �
Z

r

f

r

i

dU

dr

dr

= �
Z

r

f

r

i

dU

= � ( U(r2)� U(r1) )

Equating the two expressions for Work, we get

K2 � K1 = � ( U(r2)� U(r1) )

=) K2 + U(r2) = K1 + U(r1)

which is just the expression for conservation of energy.
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Now, consider a system of N particles with the force exerted by the i

th particle on the
j

th particle given by
~
F

ij

= f

ij

(r
ij

) r̂

ij

where r

ij

is the distance between the particles and r̂

ij

is a unit vector directed from the
position of the j

th particle to the i

th particle. Then the equations of motion for these
particles are

m

i

d

~
v

i

dt

=
X

j 6=i

~
F

ji

=
X

j 6=i

f

ji

(r
ji

) r̂

ji

Taking the dot product with ~
v

i

and summing over all i , we get

X

i

m

i

~
v

i

·
d

~
v

i

dt

=
X

i

X

j 6=i

f

ji

(r
ji

) r̂

ji

· ~v
i
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It is easy to convince oneself that the sum on the right will split into pairs of terms such
as f

ji

(r
ji

) r̂

ji

· ~v
i

+ f

ij

(r
ij

) r̂

ij

· ~v
j

where f

ji

(r
ji

) = f

ij

(r
ij

) (This is consistent with the Third Law
since r̂

ji

= �r̂

ij

). Further, the left hand side is equal to

X

i

m

i

~
v

i

·
d

~
v

i

dt

=
X

i

1
2

m

i

d

�
~
v

i

· ~v
i

�

dt

=
X

i

1
2

m

i

dv

2
i

dt

=
dK

dt

where

K =
X

i

1
2

m

i

v

2
i

=
X

i

K

i

is the total Kinetic Energy of the system.
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Then, we have

dK

dt

=
X

pairs

⇥
f

ji

(r
ji

) r̂

ji

· ~v
i

+ f

ij

(r
ij

) r̂

ij

· ~v
j

⇤

=
X

pairs

⇥
f

ij

(r
ij

) r̂

ij

·
�
~
v

j

� ~
v

i

�⇤

=
X

pairs


�f

ij

(r
ij

) r̂

ij

·
d

~
r

ij

dt

�

where~
r

ij

= ~
r

i

�~
r

j

and r̂

ij

= ~
r

ij

/r

ij

. We can always find functions U

ij

(r
ij

) such that

f

ij

(r
ij

) =
dU

ij

(r
ij

)

dr

ij
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Then

dK

dt

=
X

pairs

"
�

dU

ij

(r
ij

)

dr

ij

r̂

ij

·
d

~
r

ij

dt

#

=
X

pairs

"
�

dU

ij

(r
ij

)

dr

ij

dr

ij

dt

#

=
X

pairs


�

dU

ij

(r
ij

)

dt

�

= �
d

dt

X

pairs

U

ij

(r
ij

)

where we have used the fact that r̂

ij

· d

~
r

ij

/dt = dr

ij

/dt since only the radial
displacement is relevant to the dot product. Then, we finally get

d

dt

2

4
X

i

K

i

+
X

pairs

U

ij

(r
ij

)

3

5 = 0

which tells us that there exists a conserved energy, given by

E =
X

i

K

i

+
X

pairs

U

ij

(r
ij

)
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We identify the term
U =

X

pairs

U

ij

(r
ij

)

as the potential energy of the system of particles. Note that potential energy cannot be
written in a form that allows us to interpret it as a sum of potential energies of the
individual particles. It is a shared property of the system of particles. However, from
this single expression, the force acting on any particle can be easily extracted.
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To see this, consider the force acting on the i

th particle. This is given by

~
F

i

=
X

j 6=i

~
F

ji

=
X

j 6=i

f

ji

(r
ji

) r̂

ji

=
X

j 6=i

dU

ji

(r
ji

)

dr

ji

r̂

ji

= �
X

j 6=i

dU

ij

(r
ij

)

dr

ij

r̂

ij

= �
X

j 6=i

~r
ij

U

ij

(r
ij

)

where the gradient ~r
ij

is defined as

~r
ij

g =
@g

@x

ij

î +
@g

@y

ij

ĵ +
@g

@z

ij

k̂

with x

ij

= x

i

� x

j

etc. and where g is any function of x

ij

, y
ij

, z
ij

.
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It is easy to check that
@g

@x

i

= �
@g

@x

j

=
@g

@x

ij

etc. so that

~r
ij

g =
@g

@x

ij

î +
@g

@y

ij

ĵ +
@g

@z

ij

k̂

=
@g

@x

i

î +
@g

@y

i

ĵ +
@g

@z

i

k̂

= ~r
i

g

and similarly
~r

ij

g = �~r
j

g

Then it follows that the force acting on the i

th particle is

~
F

i

= �
X

j 6=i

~r
ij

U

ij

(r
ij

)

= �
X

j 6=i

~r
i

U

ij

(r
ij

)

= �~r
i

X

j 6=i

U

ij

(r
ij

)
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Since the only terms that depend on x

i

, y
i

and z

i

in the expression for the total potential
energy of the system U =

P
pairs

U

ij

(r
ij

) are the those that come in the combinationP
j 6=i

U

ij

(r
ij

) therefore we can finally write

~
F

i

= �~r
i

U

which tells us that we can extract the force acting on any particle by calculating the
gradient of the total potential energy with respect to coordinates of that particle.
Now let us imagine that one of the particles, say particle with mass m1 is much more
massive than the others. First, we choose an inertial frame in which the CM of the
system is at rest. The total momentum of the system in this frame is zero. Then it
follows that the velocity of the massive particle will be

~
v1 = �

m2

m1
~
v2 �

m3

m1
~
v3 � ....��

m

N

m1
~
v

N

= ⇡ 0

Then the dynamics of this particle are irrelevant. In particular, its contribution to the
total kinetic energy is vanishingly small, since it is

~
p

2
1

2m1
⇡ 0
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Then the total energy of the system will be approximately

E ⇡
~
p

2
2

2m2
+ ..+

~
p

2
N

2m

N

+ U

Further, since the coordinates of this particle do not change with time, the potential
energy of the system can be thought of as a function of position coordinates of the rest
of the particles only. Then, we may safely attribute this entire energy to the rest of the
N � 1 particles. Note however that the momentum of these particles will not be
conserved, since the massive particle, even though its position does not change, does
exert forces on the rest of the particles. Note that this argument in general cannot be
extended to a situation in which more than one particle is much more massive than the
rest. For instance, say there are three particles, with two having mass M and the third
mass m with M >> m. Then in the CM frame,

M

~
v1 + M

~
v2 + m

~
v3 = 0

Then we have
~
v1 = �~

v2 �
m

M

~
v3

which clearly does not imply that either ~v1 or ~v2 should be vanishingly small. Then, in
general, if we have a system of more than two particles, there is no, in general, even
approximately, a concept of conservation of energy o a sub-system, even if the rest of
the system is much more massive than the sub-system.
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Conservative and Non-Conservative Forces

Force acting on a particle is said to be conservative if it allows for the existence of a
conserved energy for the particle. That is, one can associate a Potential energy
function U(~r) with the interaction the force represents, such that

E =
1
2

m

~
v

2 + U(~r)

is conserved. Let us determine the necessary and sufficient condition under which a
force is conservative. We start with the Work-Energy theorem. Assume that the
particle moves from point~r1 to point~r2 under the influence of the force. Then the work
done by the force as t moves from~

r1 to~
r2 is given by

W =

Z ~
r2

~
r1

~
F · d

~
r

In general, this work depends on the details of the trajectory taken by the particle from
~
r1 to~

r2. For instance, the force due to friction (assuming it is approximately given by
F = µN where µ is the coefficient of friction and N is the normal force) opposes
motion. Therefore, if the particle moves through a small displacement d

~
r , the work

done by friction will be
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dW = ~
F · d

~
r

= �
���~F
���
��
d

~
r

��

= �µN dl

where dl is the length of the small path segment. Clearly, dW will always be a negative
number. This implies that the more the distance covered by the particle in going from~

r1
to~

r2, the more (negative) will be the work done. Assuming for a moment that the
normal force remains constant along the motion, the total work done will be

W = �µN l

where l is the total length of the path in going from~
r1 to~

r2. Clearly, the work done by
the force of friction depends on the details of the trajectory taking the particle from one
point to another. Similarly, work done by a viscous force (proportional to velocity and
directed opposite to it) will always be negative and will depend on the details of the
trajectory. As another example, consider a particle moving along a straight line (along
the x-axis). If the force acting on the particle depends only on the position of the
particle, then it can alwas be expressed as a derivative of another function of position

F (x) = �
dU(x)

dx
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Then the work done by the force as the particle goes from x1 to x2 will be

W =

Z
x2

x1

dx F (x)

= �
Z

x2

x1

dx

dU(x)

dx

= �
Z

x2

x1

dxdU

= U(x1)� U(x2)

which depends only on the end-points and not on the details of the trajectory
connecting them. However, if the force depnds in addition on time or velocity of the
particle or both, the work done will depend on the details of the trajectory.
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In case of a particle moving in three dimensions, it is not sufficient for the force to be
only a function of position for the work to be independent of the path.

Condition for Path Independence of Work

The necessary and sufficient condition for the work done by a force to be independent
of the path is that its curl is zero.
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Proof:

1

2

1

2

C1

C2

C = C1 � C2

S

Consider two paths connecting points 1 and 2 (paths C1 and C2). If the work done by
the force is independent of the path, then

Z

C1

d

~
r · ~F =

Z

C2

d

~
r · ~F

This implies that W1 � W2 = 0 or equivalently
I

C
d

~
r · ~F = 0

where C is the closed loop path defined by C = C1 � C2.
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It follows from Stokes Theorem that
I

C
d

~
r · ~F =

ZZ

S
d

~
A · (~r⇥ ~

F )

where S is the surface bound by the loop. Since the work is independent of the path,
we can tke points 1 and 2 arbitrarily close and the loop C arbitrarily small. for a very
tiny loop, the surface integral will be

ZZ

S
d

~
A · (~r⇥ ~

F ) = �A n̂ · (~r⇥ ~
F )

where �A is the area of the loop and n̂ is a unit vector normal to the area. Since This
is true for any loop, the unit vector n̂ can have any direction. Then it follows that

n̂ · (~r⇥ ~
F ) = 0

for arbitrary n̂. Then
~r⇥ ~

F = 0

Clearly, the converse is true. That is, if ~r⇥ ~
F = 0, the work done is independent of the

path.
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An equivalent statement is that the force can be expressed as the gradient of a function
(which is called the Potential Energy Function). It is clear that if this is true then the curl
of the force is zero. To see the converse, let us take a fixed reference point~r0 and
compute the work done by ~

F along an arbitrary path from~
r0 to~

r . Since this is
independent of the path, for a given~

r0, it can only depend on the final point~r . Then, we
can define a function U(~r) such that

U(~r) = �
Z ~

r

~
r0

d

~
r · ~F

where the negative sign is conventional. This clearly tells us that the function so
defined is such that U(~r0) = 0. Now, consider the change in U as the final point is
changed from~

r to~
r + d

~
r .

1

�r
d�r

�r + d�r
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Then

dU = �
 Z ~

r+d

~
r

~
r0

d

~
r · ~F �

Z ~
r

~
r0

d

~
r · ~F

!

Since the work done is independent of the path, we can choose the path connecting~
r0

to~
r + d

~
r to be such that it coincides with the first path till the point~r and then goes to

the point~r + d

~
r along an infinitesimal straight segment d

~
r . Then,

Z ~
r+d

~
r

~
r0

d

~
r · ~F =

Z ~
r

~
r0

d

~
r · ~F +

Z ~
r+d

~
r

~
r

d

~
r · ~F

⇡
Z ~

r

~
r0

d

~
r · ~F + d

~
r · ~F

Using the result
dU = ~rU · d

~
r

we finally get
~rU · d

~
r = �~

F · d

~
r

Since this is true for arbitrary d

~
r , it follows that

~
F = �~rU
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Given that the total force acting on a particle is independent of the path, it is easy to
show that it is conservative. That is, it allows for a conserved energy. To see this, let us
compute the work done by the force from some point~r1 to~

r2. Then, using the
Work-Energy Theorem, we get that

K2 � K1 =

Z ~
r2

~
r1

~
F · d

~
r

= �
Z ~

r2

~
r1

~rU · d

~
r

= �
Z ~

r2

~
r1

dU

= �U(~r2) + U(~r1)

which gives
K2 + U(~r2) = K1 + U(~r1)

This tells us that the conserved energy is

E = K + U(~r)
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Potential Energy

We have seen that if a force is conservative, there exists a ‘Potential Energy’ function U

such that
~
F = �~rU

It is however clear that this function cannot be unique, since it we add an arbitrary
constant to it, this equation will still be satisfied. Equivalently, the equation

U(~r) = �
Z ~

r

~
r0

d

~
r · ~F

makes no reference to the ‘reference’ point~r0 and the arbitrariness in defining U could
be equivalently seen to stem from this. This arbitrariness is not of physical relevance.
What is of physical relevance is that the sum of kinetic and potential energy is
conserved. If we add a constant to a conserved quantity, the resulting quantity will still
be conserved. However, changes in potential energy are of physical relevance, since
there is no arbitrariness there (the arbitrary constant cancelling when we take the
difference in potential energy between two points). It is clear from the definition of U

that the change in poential energy from point~r1 to~
r2 is

U(~r2)� U(~r1) = �
Z ~

r2

~
r1

d

~
r · ~F

which is not arbitrary.
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Example

Constant Force Let a constant force ~
F act on a particle. This force does satisfy

~r⇥ ~
F = 0, so is conservative. Choosing any point~r0 as a reference, the potential

energy of the particle at point~r is given by

U(~r) = �
Z ~

r

~
r0

d

~
r · ~F

= �~
F ·
 Z ~

r

~
r0

d

~
r

!

= �~
F · (~r �~

r0)

Then apart from an additive constant, a possible potential energy function is

U(~r) = �~
F ·~r
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Example

Central Force A central force ~
F = f (r)r̂ has zero curl. The potential energy function

will be given by

U(~r) = �
Z ~

r

~
r0

f (r) r̂ · d

~
r

Expressing the line element d

~
r in spherical polar coordinates, we have

d

~
r = dr r̂ + r d✓ ✓̂ + r sin ✓ d� �̂

Then r̂ · d

~
r = dr , so that

U(~r) = �
Z

r

r0

dr f (r)

which is independent of the path, and depends only on the radial distance of point~r
from the force centre. For instance, for an inverse square force (Gravitational,
Coulomb) of the form f (r) = c/r

2 where c is a constant, we get

U(~r) = �c

Z
r

r0

dr

1
r

2

= c

✓
1
r

�
1
r0

◆

so that a possible potential energy function is U(r) = c/r .
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Let us now consider a complicated system of N particles, all interacting with central
forces of the kind ~

F

ij

= f

ij

(r
ij

)r̂
ij

. Let us consider a subsystem of this system which
contains n particles. Each of these particles experiences forces due to other particles
of the subsystem and that due to particles belonging to the external environment
(which is just the rest of the N � n particles. If ~F

i

is the total force acting on the i

th

particle, we can write it as
~
F

i

= ~
F

int

i

+ ~
F

ext

i

where ~
F

int

i

=
P

j2sub

~
F

int

ji

is the total force exerted by other particles of the subsystem

and ~
F

ext

i

is the total force acting on the particle due to the environment. under the
influence of each other and the environment, let the subsystem evolve from some initial
state to another state. Then, it follows from the Work-energy theorem that

Z
fin

in

~
F

i

· d

~
r

i

= K

fin

i

� K

in

i

where K

i

is the kinetic energy of the i

th particle. Therefore

�K

sub

=
X

i2sub

Z
fin

in

~
F

i

· d

~
r

i

where K

sub

is the total kinetic energy of the subsystem. Let W

ext

be the work done on
the subsystem by the environment.
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Then

�K

sub

=
X

i2sub

Z
fin

in

~
F

i

· d

~
r

i

=
X

i2sub

Z
fin

in

~
F

ext

i

· d

~
r

i

+
X

i2sub

Z
fin

in

~
F

int

i

· d

~
r

i

= W

ext

+
X

j2sub

X

i2sub

Z
fin

in

·d~r
i

= W

ext

+
X

pairs2sub

 Z
fin

in

~
F

int

ji

· d

~
r

i

+

Z
fin

in

~
F

int

ij

· d

~
r

j

!

= W

ext

+
X

pairs2sub

 Z
t

f

t

i

~
F

int

ji

· ~v
i

dt +

Z
t

f

t

i

~
F

int

ij

· ~v
j

dt

!

= W

ext

+
X

pairs2sub

Z
t

f

t

i

dt

⇣
~
F

int

ji

· ~v
i

+ ~
F

int

ij

· ~v
j

⌘

= W

ext

+
X

pairs2sub

Z
t

f

t

i

dt

~
F

int

ji

·
�
~
v

i

� ~
v

j

�

= W

ext

�
X

pairs2sub

Z
t

f

t

i

dt

~
F

int

ji

·
d

~
r

ji

dt
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Then the work done by the environment on the subsystem is

W

ext

= �K

sub

+
X

pairs2sub

Z
t

f

t

i

dt

~
F

int

ji

·
d

~
r

ji

dt

= �K

sub

+
X

pairs2sub

Z
t

f

t

i

dt f

ji

(r
ji

)r̂
ji

·
d

~
r

ji

dt

= �K

sub

+
X

pairs2sub

Z
t

f

t

i

dt f

ji

(r
ji

)
dr

ji

dt

Writing

f

ij

(r
ij

) =
dU

ij

(r
ij

)

dr

i

j

we get

W

ext

= �K

sub

+
X

pairs2sub

Z
t

f

t

i

dt

dU

ji

(r
ji

)

dr

ji

dr

ji

dt

= �K

sub

+
X

pairs2sub

Z
f

i

dU

ji

(r
ji

)

dr

ji

dr

ji

= �K

sub

+
X

pairs2sub

Z
f

i

dU

ji

= �K

sub

+�U

internal
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where we define
U

internal

=
X

pairs2sub

U

ij

as the internal potential energy of the subsystem. If we define

E

sub

= K

sub

+ U

internal

as the energy (not conserved) of the subsystem, then we have the following result:

Work done on a Subsystem

The work done on a subsystem by its environment equals the change in energy of the
subsystem.

Note that in this expression for energy of the subsystem, we have not included the
potential energy of interaction with the environment.
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Illustration: Two Particles

Consider a system of two particles (of masses m1 and m2) interacting with a force that
is central, that is, depends only on their separation and their relative displacement

~
F12 = f (r)r̂

where~
r = ~

r1 �~
r2 is the relative displacement of the two particles and r̂ is a unit vector

along the direction of~r . Assuming there are no external forces acting on the system,
the total momentum of the system will be conserved and the centre of mass will move
with a uniform velocity (equal to the total momentum divided by the total mass of the
system). The equations of motion for the two particles will be

m1
d

2~
r1

dt

2 = ~
F21

= �f (r) r̂

m2
d

2~
r2

dt

2 = ~
F12

= f (r) r̂
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We can eliminate the position vectors~r1 and~
r2 in favor of the position vector of the CM

~
R

cm

and the relative displacement~r , since

~
R

cm

=
m1~r1 + m2~r2

m1 + m2
~
r = ~

r1 �~
r2

This gives

~
r1 = ~

R

cm

+
m2

m1 + m2
~
r

~
r2 = ~

R

cm

�
m1

m1 + m2
~
r

Differentiating these equations with respect to time, we get

~
v1 = ~

V

cm

+
m2

m1 + m2
~
v

~
v2 = ~

V

cm

�
m1

m1 + m2
~
v

where ~
v = ~

v1 � ~
v2 is the relative velocity.
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Substituting these in (either) equations for motion (and observing that d

2~
R

cm

/dt

2 = 0,
we get ✓

m1m2

m1 + m2

◆
d

2~
r

dt

2 = �f (r) r̂

We write this as

µ
d

2~
r

dt

2 = ~
F

where
µ =

m1m2

m1 + m2

is called the reduced mass of the system and

~
F = �f (r) r̂

is the internal force of interaction. This resembles the equation of motion of a single

particle of mass µ under the influence of force ~
F .
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Energy

Since the force is central, the total energy of the system will also be conserved. To get
an expression for the conserved energy, take the dot product of equation of motion of
m1 with ~

v1 and dot product of equation of motion of m2 with ~
v2 and add

m1~v1 ·
d

~
v1

dt

+ m2~v2 ·
d

~
v2

dt

= �f (r)r̂ ·
�
~
v1 � ~

v2
�

=)
1
2

m1
d

~
v

2
1

dt

+
1
2

m2
d

~
v

2
2

dt

= �f (r)r̂ ·
d

~
r

dt

=)
dK

dt

= �f (r)
dr

dt

where K is the total kinetic energy of the system.
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There always exists a function U(r) such that

f (r) =
dU

dr

Then

dK

dt

= �
dU

dr

dr

dt

= �
dU

dt

which tells us that
E =

1
2

m1~v
2
1 +

1
2

m2~v
2
2 + U(r)

is conserved. The potential energy of the system is given by

U(r) =

Z
r

r0

dr f (r)

where r0 is arbitrary and has no physical significance.
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The velocities ~
v1 and ~

v2 can be traded for the velocity of the CM and the relative
velocity of the two particles. This substitution gives

E =
1
2

M

~
V

2
cm

+
1
2
µ~v2 + U(r)

where M = m1 + m2 is the total mass of the system. Since ~
V

cm

is itself constant, the
first term (which we can call ‘energy of CM’ or energy of mass motion) is itself
conserved. Of interest is the conservation of the second term. In particular, in the CM
frame, the first term will be zero and the expression for conserved energy becomes

E =
1
2
µ ~

v

2 + U(r)

We can also obtain this expression directly from the effective one particle equation of
motion

µ
d

2~
r

dt

2 = �f (r) r̂

The effective force if ~F = �f (r)r̂ and is such that ~r⇥ ~
F = 0. Then, there exists a

function U(r) such that ~F = �~rU, from which we again get

f (r) =
dU

dr

and a conserved energy

E =
1
2
µ ~

v

2 + U(r)
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Angular Momentum
For an isolated system of particles interacting through central interactions, in addition
to momentum and energy, there is an additional conserved quantity, the Angular

Momentum of the system. This is defined to be

~
L =

X

i

~
r

i

⇥ ~
p

i

=
X

i

~
r

i

⇥ m

i

~
v

i

Differentiating this with respect to time

d

~
L

dt

=
X

i

~
r

i

dt

⇥ ~
p

i

+
X

i

~
r

i

⇥
~
p

i

dt

=
X

i

~
v

i

⇥ ~
p

i

+
X

i

~
r

i

⇥
X

j 6=i

~
F

ji

=
X

pairs i,j

⇣
~
r

i

⇥ ~
F

ji

+~
r

j

⇥ ~
F

ij

⌘

=
X

pairs i,j

�
~
r

i

�~
r

j

�
⇥ ~

F

ji

= 0

since~
r

ij

= ~
r

i

�~
r

j

is parallel to ~
F

ij

(central interactions).
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For a system of two particles, the angular momentum of the system has a simple form.
Startign with

~
L = m1~r1 ⇥ ~

v1 + m2~r2 ⇥ ~
v2

and substituting for~r1,~r2,~v1 and ~
v2 in therms of CM and relative position and velocity,

we get
~
L = M

~
R

cm

⇥ ~
V

cm

+ µ~r ⇥ ~
v

Again, the first term associated with CM motion (or mass motion) of the system is itself
conserved. Then, by moving to the CM frame, we can only focus on the more
physically interesting piece

~
L = µ~

r ⇥ ~
v

Since ~
L is conserved, both its magnitude and direction will be constant. In particular, it

is easy to see that the motion will be confined to the plane containing~
r and ~

v since ~
L is

orthogonal to both.
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Summary:

Summary of Central Force Dynamics

Equation of Motion:

µ
d

2~
r

dt

2 = �f (r) r̂

Conserved quantities:
Energy

E =
1
2
µ ~

v

2 + U(r)

Angular Momentum
~
L = µ~

r ⇥ ~
v
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Gravitational Field due to a Ring
Gravitational Field:Force per unit ‘test mass’ (mass on which force is being exerted).
We calculate gravitational field due to a massive ring at a point along the axis. We use
Principle of Superposition and symmetry.

The net gravitational field will be along the axial direction since pairs of corresponding
masses dm will contribute together to give a net contribution along the axis. The
vertical component due to any mass element dm will be (Gdm cos ✓/l

2). Since ✓ and l

are the same for each element, the total gravitational field will have magnitude

F =
Gm

l

2 cos ✓

=
Gm h

�
r

2 + h

2
�3/2
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Gravitational Field due to a Disc

We compute the gravitational field due to a disc of radius r and mass m at a point
along its axis.

We subdivide the Disc into concentri rings of radii ⇢ and radial thickness d⇢. The area
of each such ring will be dV = 2⇡⇢. The mass of the ring will be

dm = m

dV

⇡r

2

=
2m ⇢d⇢

r

2
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The gravitational filed due to such a ring will be

dF =
Gdm h

�
⇢2 + h

2
�3/2

=
2mGh

r

2
⇢d⇢

�
⇢2 + h

2
�3/2

The total gravitational field due to the disc will be

F =
2mGh

r

2

Z
r

0
d⇢

⇢
�
⇢2 + h

2
�3/2

=
2mG

r

2

 
1 �

h

p
r

2 + h

2

!
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Gravitational Field due to a Sphere

We divide the sphere into discs and use superposition to calculate the net gravitational
field.

Gravitational field due to the dic is

dF =
2dmG

r

2

 
1 �

h

p
⇢2 + h

2

!

The mass of the disc is

dm = M

 
dV

4
3⇡R

3

!

where dV is the volume of the disc, equal to the area of the circular surface ⇡⇢2 times
its height R sin ✓d✓.
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Then

dF =
3GM

2R

2 sin ✓d✓

 
1 �

h

p
⇢2 + h

2

!

Using ⇢ = R sin ✓ and h = r � R cos ✓, the total gravitational field is

F =
3GM

2R

2

Z ⇡

0
d✓ sin ✓

 
1 �

r � R cos ✓
p

r

2 + R

2 � 2rR cos ✓

!

The integral is easy to perform and yields

F =
GM

r

2

which is the same as if all the mass of the sphere were concentrated at a single point
at its centre.
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Consequences of Energy and Angular Momentum Conservation
Consequences of Angular Momentum conservation: We have already seen that as
a consequence of angular momentum conservation, the motion of two objects under a
central force is confined to a plane. A further consequence is as follows: as the objects
move in a plane, the length and orientation of the relative displacement vector changes
with time. However, this happens such that the relative displacement vector sweeps
equal areas in equal intervals of time

Proof: We choose polar coordinates r , ✓. Then if the radius vector sweeps an
infinitesimal angle d✓ in an infinitesimal interval dt , then the area swept will be

dA =
1
2

r

2
d✓

The rate of change of this area is then

dA

dt

=
1
2

r

2✓̇
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In the CM frame, the angular momentum of the system is ~
L = µ~r ⇥ ~

v . In polar
coordinates, ~v = ṙ r̂ + r ✓̇✓̂. Then the magnitude of angular momentum is

L = µr

2✓̇

which is constant. Then,
dA

dt

=
L

2µ

will be constant. Then, in a given interval of time, the area swept will be the same.
The conservation of angular momentum allows us to eliminate ✓̇ in favor of r

✓̇ =
L

µr

2

This makes the analysis of the dynamics very simple.
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Consequences of Conservation of Energy: In the CM frame, the energy of the
system is

E =
1
2
µ~v2 + U(r)

Expressing velocity in polar coordinates, and trading ✓̇ for r , we get

E =
1
2
µṙ

2 +
1
2
µr

2✓̇2 + U(r)

=
1
2
µṙ

2 + U

eff

(r)

where

U

eff

(r) = U(r) +
L

2

2µr

2

is called the Effective Potential. Note that the real potential energy function is U(r).
However, the conservation of angular momentum gives rise to an expression for anergy
exclusively in terms of the radial coordinate and its derivative. Then, so far as the radial
motion is concerned, the expression for energy is as if there is a particle moving in one
dimension under the influence of a ‘potential energy’ function U

eff

(r). The angular
momentum dependent term is called a centrifugal barrier term. If this were the only
term, it would give rise to a ‘repulsive’ radial force.
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Given the form of the physical potential energy function, it is possible, just by analysing
the behavior of U

eff

(r) as a function of r , to comment on the general motion of the two
particle system. In particlular, it gives an insight into whether the particles can be
bound in a confined region of space in an orbit. As an example, consider the
gravitational interaction between two masses, such that

U

eff

(r) = �
Gm1m2

r

+
L

2

2µr

2

Depending on the (conserved) energy of the system, the system may or may not be
confined to an orbit.
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Circular Orbit

Bound Motion 

Unbound Motion

The core idea is that the ‘kinetic energy’ term µṙ

2/2 cannot be negative. Points at
which ṙ = 0 are such that the radial distance (momentarily) does not change. At these
points, the particles are moving perpendicular to the line joining them. These are called
‘turning points’, since at these points, the sign of ṙ changes. there will always be at
least one such turning point. This will be points at which the line of constant energy
intersects the effective potential energy function (plotted as a function of r ). For a
special (minimum) value of energy, this line will graze the minimum of the effective
potential. For this energy, r will not change, and the particles will execute circular
motion. If the energy is incresed, within a certain range, there will be two turning
points. For these values of energy, the separation between the two particles will always
lie between these points and they will form a bound motion (for the gravbitational
interaction, this corresponds to an elliptical orbit). for large enough values of energy,
there will be only one turning point, and this will be the minimum distance between the
two particles. The maximum distance is not bounded. For gravitational interaction, this
corresponds to parabolic and hyperbolic orbits.
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Celestial Orbits

We now turn to gravitational interaction of celestial objects with the Sun in the Solar
system. Since the mass of the Sun is much larger than any other celestial object in the
Solar system, we ignore its dynamics and assume the CM to lie at its centre. Then
µ ⇠ m, the mass of the celestial object. The goal is to construct the detailed orbit of
any celestial object. say, we are given the position and velocity of the object at any
instant of time (say t = 0). We can choose a polar coordinate system with the polar
angle ✓ measured relative to the line joining the centre of the sun to the position of the
object at this instant. Then, information about position and velocity is equivalent to
information about r , ṙ , ✓̇ at t = 0. Of course, ✓ = 0 at this instant by construction.
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To determine the radial motion, we use the expression for the conserved energy, which
gives the following expression for ·r

dr

dt

= ±
r

2
m

(E � U

eff

)

The sign is chosen depending on whether the radial distance is increasing or
decreasing during the period over which change in r is to be determined. Assuming the
positive sign, this equation allows us to explicitly compute the radial coordinate at
instant t , given the coordinate r0 at an instant t0

Z
r

r0

dr

p
(2/m) (E � U

eff

)
= t � t0

The angular coordinate can be determined from the expression for the conserved
angular momentum

d✓

dt

=
L

mr

2

=) ✓ � ✓0 =
L

m

Z
t

t0

dt

r

2

where in the t integral, it is assumed we know the function r(t) already, which is
determined from the energy relation.
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The Orbit

The shape of the orbit is determined if we know r as a function of ✓. Taking the ratio of
✓̇ and ṙ , we get

d✓

dr

=
L

mr

2

s
m

2(E � U

eff

)

=) ✓ � ✓0 = L

Z
r

r0

dr

r

2
p

2m(E � U

eff

)

For motion of celestial objects

U = �
C

r

where C = GMm where M is the mass of the Sun. However, the same result would be
valid for motion of an object under the gravitational influence of a much more massive
object (satellite around the Earth,etc.).
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Then
✓ � ✓0 = L

Z
r

r0

dr

r

p
2m (2mEr

2 + 2mCr � L

2)

The integral yields the solution

r =

�
L

2/mC

�

1 �
q

1 +
�
2EL

2/mC

2
�

sin(✓ � ✓0)

The effective potential energy function

U

eff

(r) = �
C

r

+
L

2

2mr

2

has a minimum at r0 = L

2/mC and this minimum value is U

min

eff

= �mC

2/2L

2. The
constant ✓0 is arbitrary, and setting it ✓0 = �⇡/2, we get the following equation for orbit

r =
r0

1 � ✏ cos ✓

where

✏ =

s
1 +

E��
U

min

eff

��

is a dimensionless parameter called eccentricity.
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Clearly, since the least value of energy is equal to U

min

eff

, therefore 0  ✏ < 1. We first
express the equation of the orbit in Cartesian coordinates. Using x = r cos ✓ and
r =

p
x

2 + y

2, we get
(1 � ✏2)x2 � 2r0✏x + y

2 = r

2
0

For the lowest value of energy, ✏ = 0 and the equation reduces to

x

2 + y

2 = r

2
0

which is the equation for a circular orbit. Then, for the least value of energy, the
celestial object moves in a circular orbit
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For ✏ = 1, the equation becomes

y

2 = 2r0x + r

2
0

which is the equation for a parabola
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For ✏ > 1, we write the equation in the form

y

2 = (✏2 � 1)x2 + 2r0✏x + r

2
0

= (✏2 � 1)
✓

x +
r0✏

✏2 � 1

◆2
�

r

2
0

✏2 � 1

This is the equation for a hyperbola. The hyperbola is bounded within two lines

y = ±
p

✏2 � 1
✓

x +
r0✏

✏2 � 1

◆

These are asymptotes to the hyperbola
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Finally, for 0 < ✏ < 1, the equation can be written as

(1 � ✏2)

✓
x �

r0✏

1 � ✏2

◆2
+ y

2 =
r

2
0

1 � ✏2

which is of the form
a(x � x0)

2 + y

2 = R

2

which is the equation of an ellipse with a = 1 � ✏2, x0 = r0✏/(1 � ✏2) and
R = r0/

p
1 � ✏2. Clearly, a < 1

The centre of the ellips is not at the location of the massive object. The massive object
is instead at the focus of the eelipse. From the equation r = r0/1 � ✏ cos ✓, it is clear
that the orbiting object will be closest for ✓ = ⇡, for which the distance is r

p

= r0/1 + ✏
(Perihelion distance) and farthest for ✓ = 0, for which the distance is r

p

= r0/1 � ✏
(Aphelion distance)
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Period of Elliptic Orbit: To calculate the tiume period of the elliptic orbit, we move to
the angular momentum equation L = mr

2✓̇ and integrate over one time period (for
which the angle changes over 2⇡

T =
m

L

Z 2⇡

0
r

2
d✓

=
mr

2
0

L

Z 2⇡

0

d✓

(1 � ✏ cos ✓)2

where the equation of the orbit has been used. The integral over ✓ is standard and
gives Z 2⇡

0

d✓

(1 � ✏ cos ✓)2 =
2⇡

�
1 � ✏2

�3/2

Then,

T =
2m⇡r

2
0

L

�
1 � ✏2

�3/2
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Central Force Motion

Squaring both sides and using the fact that the length of the major axis is
A = 2r0/(1 � ✏2) and that r0 = L

2/mC, we get

T

2 =
m⇡2

2C

A

3
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Angular Momentum and Torque

Angular Momentum

Consider a system of particles. We have seen that if the particles interact through
central forces then in addition to energy and mmentum, there exists another physical
quantity, Angular Momentum, which is conserved. Relative to an origin, the angular
momentum of a particle of mass m is defined as

~L = ~r ⇥ ~p

= m ~r ⇥ ~v

In absence of a force, this does not change with time. If an external force ~F acts on the
particle then the rate of change of angular momentum is given by

d~L
dt

= ~r ⇥
d~p
dt

= ~r ⇥ ~F

The quantity~r ⇥ ~F is called torque. Then

d~L
dt

= ~⌧
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For a system of particles experiencing both (central) internal and external forces, the
total angular momentum ~L =

P
i mi ~ri ⇥ ~vi changes according to

d~L
dt

=
X

i

~ri ⇥
d~pi

dt

=
X

i

~ri ⇥

0

@~F ext
i +

X

j 6=i

~Fji

1

A

=
X

i

~ri ⇥ ~F ext
i

= ~⌧ext

where the internal contributions cancel (as demonstrated before). The quantity
~⌧ext =

P
i ~ri ⇥ ~F ext

i is the total external torque on the system of particles.
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We can use the CM of the system as an origin as well. If ~r 0 i is the position of the i th
particles relative to the CM and~ri its position relative to the chosen origin O, then

~ri = ~Rcm + ~r 0 i

Similar relation holds for velocity relative to O and the CM

~vi = ~Vcm + ~v 0
i
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Then the angular momentum of the system relative to O can be written as

~L =
X

i

mi

⇣
~Rcm + ~r 0 i

⌘
⇥
⇣
~Vcm + ~v 0

i

⌘

=
X

i

mi
~Rcm ⇥ ~Vcm +

X

i

mi ~r 0 i ⇥ ~v 0
i + ~Rcm ⇥

 
X

i

mi ~v 0
i

!
+

 
X

i

mi ~r 0 i

!
⇥ ~Vcm

= M~Rcm ⇥ ~Vcm +
X

i

mi ~r 0 i ⇥ ~v 0
i

= ~Lcm + ~L0

where ~Lcm = M~Rcm ⇥ ~Vcm is termed ‘angular momentum of CM’ and
~L0 =

P
i mi ~r 0 i ⇥ ~v 0

i is the angular momentum of the system about the CM. The other
two terms are identically zero, since

P
i mi ~v 0

i is simply the momentum of the system
as viewed in the CM frame, which is zero and

P
i mi ~r 0 i equals the mass of the system

times the position of the CM relative to itself, which is zero as well.
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Then the rate of change of angular momentum about O is given by

d~L
dt

=
d~Lcm

dt
+

d~L0

dt

where

d~Lcm

dt
= M

d~Rcm

dt
⇥ ~Vcm + M~Rcm ⇥

d~Vcm

dt

= ~Rcm ⇥ M
d~Vcm

dt
= ~Rcm ⇥ ~Fext

where ~Fext is the total external force acting on the system. Therefore

d~L
dt

= ~Rcm ⇥ ~Fext +
d~L0

dt
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We now look at the expression for the total torque on the system due to external forces.
Once again, expressing~ri = ~Rcm + ~r 0 i , we get

~⌧ext =
X

i

~ri ⇥ ~F ext
i

=
X

i

⇣
~r 0 i + ~Rcm

⌘
⇥ ~F ext

i

=
X

i

~r 0 i ⇥ ~F ext
i + ~Rcm ⇥

X

i

~F ext
i

= ~Rcm ⇥ ~Fext +
X

i

~r 0 i ⇥ ~F ext
i

= ~⌧cm + ~⌧ 0

where ~⌧cm = ~Rcm ⇥ ~Fext can be formally identified as the ‘torque acting on the CM’ and
~⌧ 0 =

P
i
~r 0 i ⇥ ~F ext

i is the torque acting on the system about the CM. Then, it follows that

d~L
dt

= ~Rcm ⇥ ~Fext +
d~L0

dt
= ~⌧cm + ~⌧ 0
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Motion of a Rigid Body

In a ‘rigid’ object, the relative positions of the constituent particles remain fixed. Then, if
there are N particles in the object, to describe the motion of the object, we do not need
to describe how 3N coordinates (three for each particle) change with time. Instead, the
motion is completely described by describing how six coordinates change with time. It
is convenient to view the motion as that of the CM and the motion about the CM. We
need three coordinates to describe the motion of the CM. Then, relative to the CM,
since the position of the CM itself does not change and also the relative positions of the
constituent particles do not change, the only motion about the CM is purely rotational.
To see this, let us set up a coordinate system with origin O and another coordinate
system with the origin located at the CM such that the coordinate aces are rigidly
attached to the object

x

y
O

z

O�

x�

y�
z�
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The x 0, y 0, z0 coordinates of all the particles will be fixed, since these coordinates are
attached to the object. Then, to describe the coordinates of any particle with respect to
the coordinate system x , y , z, all we need is to determine is the position of the CM (the
other origin) and the orientation of system x 0, y 0, z0 relative to system x , y , z (given in
terms of three angles between the respective coordinate axes). Therefore, we just
need six coordinates to specify the entire configuration of the rigid object. An
equivalent point of view is that since the motion about the CM is a pure rotation, it must
be about an axis, and by some angle. The direction of the axis can be described by two
numbers (say polar angles ✓ and � relative to the coordinate system x , y , z) and the
angle of rotation about that axis gives a third number. Again, the motion about the CM
is described in terms of three numbers. For simplicity, we will consider only those
situations in which the direction of the axis of rotation does not change with time. Then
the entire motion of the rigid object can be described by the position of the CM and a
single angle of rotation about it. For instance, a cylinder rolling down an incline is an
example in which the direction of the axis of rotation is fixed.
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Fixed Axis Rotation

Consider a rigid body rotating about a fixed axis. For this discussion, we are not
assuming that the axis is passing through the CM. As the body rotates, every particle
moves in a circle with radius equal to the perpendicular distance from the particle to
the axis. Given an initial configuration of the object, the new configuration when the
object rotates by angle � is simple to describe: any one particle has moved along its
circular path by angle �, the same for all the particles. We can define an angular
coordinate � such that it is zero for any one instant of time and at a later instant of time
is equal to the angle through which the body rotates in that duration. To predict the
motion of the object from the dynamical equation, we also need to know the velocity of
every particle at a given instant of time, apart from its position. We now show that the
velocity of every particle is known, if we know the angular velocity of the rigid body.
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Let the position of the particle at instant t relative to an origin on the axis be~r(t). As
the body turns through an infinitesimal angle �� in time interval �t , its new position is
~r(t +�t). Let the perpendicular distance of the particle from the axis be ⇢. From the
illustration, we see that

~r(t) = ~d + ~⇢(t)

where ~d is a vector along the axis, and the vector ~⇢(t) changes with time because its
direction changes with time (its tip traces a circle along with the particle). Further,

~r(t +�t) = ~r(t) +�~r

where in the limit �t is infinitesimal,
���~r

�� = ⇢ ��. Then it is clear that

�~r = n̂ ⇥ ~⇢(t) ��
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Angular Momentum and Torque

However, since n̂ ⇥ ~d = 0, it follows that

�~r = n̂ ⇥~r(t) ��

Dividing by �t and taking the limit �t ! 0, we get

d~r
dt

= !n̂ ⇥~r(t)

where ! = �̇ is the angular speed. We define the instantaneous angular velocity as
~! = �̇n̂. Then, we get

~v(t) = ~!(t)⇥~r(t)

It is clear that if the vector ~! is known (the same for all particles), we can determine the
velocity of any particle of the object.
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Angular Momentum and Torque

Rigid Body Dynamics

The dynamical problem is as follows: Given the position and velocity of all the particles
at any one instant of time, we need to determine them at a later instant. If we know the
positions at any one instant of time and the angular velocity vector at all instants of
time, we can in principle solve the differential equation

d~r
dt

= ~!(t)⇥~r(t)

to determine the position and velocity at all instants of time. This is just a first order
differential equation in~r(t), provided that ~!(t) is a known function of time. The problem
then reduces to the problem of determining a dynamical equation for the angular
velocity. It is here that angular momentum and torque take centrestage.
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Angular Momentum of a Rigid Body

Let us compute the angular momentum of a rigid body spinning about a fixed axis with
angular velocity ~!

~L =
X

i

mi~ri ⇥ ~vi

Using the fact that ~vi = ~! ⇥~ri (and referring to the illustration)
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~L =
X

i

mi~ri ⇥
�
~! ⇥~ri

�

=
X

i

mi

⇣
~di + ~⇢i

⌘
⇥ (~! ⇥ ~⇢i )

=
X

i

mi~⇢i ⇥ (~! ⇥ ~⇢i ) +
X

i

mi
~di ⇥ (~! ⇥ ~⇢i )

= ~L! +
X

i

mi
~di ⇥ (~! ⇥ ~⇢i )

where
~L! =

X

i

mi~⇢i ⇥ (~! ⇥ ~⇢i )

From the geometry of the cross products, it is easy to see that in the expression for
vector ~L! , each term is in the same direction as ~!. Further, the magnitude of this
vector is L! =

�P
i mi⇢

2
i

�
!.
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Then, we can write
~L! = I ~!

where
I =

X

i

mi⇢
2
i

is called the Moment of Inertia about the given axis. The second term

~L? =
X

i

mi
~di ⇥ (~! ⇥ ~⇢i )

is easily seen to be perpendicular to ~! and is not zero in general. Setting up
coordinates such that the axis of rotation coincides with the z axis, we can write
~! = !k̂ , ~⇢i = xi î + yi ĵ and ~di = zi k̂ . Then,

~L? = !
X

i

mi zi k̂ ⇥
⇣

k̂ ⇥
⇣

xi î + yi ĵ
⌘⌘

= �!

 
X

i

mi zi xi

!
î + !

 
X

i

mi zi yi

!
ĵ

In the special case the mass distribution of the body is symmetric about the axis of
rotation (z axis), each sum is zero (convine yourself) and the perpendicular
contribution to the total angular momentum is zero. Then, for an axisymmetric object,

~L = I ~!
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Then the fundamental dynamical quantity of interest directly related to the angular
velocity is angular momentum. If we know how the angular momentum (technically, the
component of angular momentum along the axis of rotation) of the body changes with
time, we can predict how its angular velocity changes with time. We know the
dynamical equation for ~L

d~L
dt

= ~⌧ext

Then, we need to compute the total external torque, in particular, the component of the
torque along the axis of rotation. If n̂ is a unit vector along the axis of rotation, then it
follows from the expression for the angular momentum of the rigid body that

~L · n̂ = I!

Differentiating with respect to time, we get

n̂ ·
d~L
dt

= I
d!
dt

=) ~⌧ext · n̂ = I
d!
dt

This is the rotational analogue of the equation for the CM. The quantity

↵ =
d!
dt

is called angular acceleration. The moment of inertia I is the analogue of the mass of
the body.
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Energy of Rotation

Let us calculate the kinetic energy of a rigid body spinning with angular velocity ~!.
Referring to the previous illustration, we have

K =
1
2

X

i

mi~v2
i

=
1
2

X

i

mi (~! ⇥ ~⇢i )
2

=
1
2

X

i

mi⇢
2
i !2

=
1
2

I !2
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Work-energy Theorem for a Rigid Body

Again, confining for a moment to purely rotational motion, the generalised Work-Energy
Theorem tells us that the work done by external forces on a system of particles (here
the particles of a rigid body) is equal to the change in the enegy of the system, the
energy beoing the sum of the kinetic energy of the particles and their mutual interaction
potential energy

Wext = �E

where
E =

X

i

Ki +
X

pairs i,j

Uij (rij )

Since the separation between the particles of a rigid object does not change, there is
no change in the potential energy. Then,

Wext = �K

where K is the rotational kinetic energy of the body.
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Motion Involving Translation and Rotation

For a general motion of a rigid object involving translation and rotation, it is convenient
to view the motion as motion of the CM plus rotational motion about the CM. The
motion of the CM satisfies equations

d~Rcm

dt
= ~Vcm

M
d~Vcm

dt
= ~Fext

The rotational motion about the CM will satisfy

d~L
dt

= ~⌧ext

~L = I ~! + ~L?

where ~L is the angular momentum about the CM and ~⌧ext is the external torque about
the CM. For an axisymmetric object, vecL = I ~!. Often, due to constrained motion, the
two motions will be related, for instance, for an object rolling without slipping.
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Total Kinetic Energy

For motion involving both translations and rotations, we compute the expression for the
total kinetic energy of the rigid object. Let the velocity of the i th particle of the body be
~vi in an inertial frame and ~v 0

i be the velocity relative to the CM. Then the toal kinetic
energy of the object is

K =
1
2

X

i

mi~v2
i

=
1
2

X

i

mi

⇣
~Vcm + ~v 0

i

⌘2

=
1
2

X

i

mi

⇣
~V 2

cm + ~v 02
i + 2~Vcm · ~v 0

i

⌘

=
1
2

M~V 2
cm +

1
2

X

i

mi ~v 02
i + 2~Vcm ·

X

i

mi ~v 0
i

=
1
2

M~V 2
cm + Krot

where Krot is the kinetic energy (of rotation) about the CM. The term
P

i mi ~v 0
i is zero,

since this is the total momentum in the CM frame, which is zero.
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Fixed Axis Rotation: Physical Pendulum

A rigid object is free to move under the influence of (uniform) gravity about a horizontal
axis. We determine its motion.

Pivot

This is an example of fixed axis rotation. The angular velocity ~! will be along the
direction of the axis. Let n̂ be a unit vector along the axis, say coming out of the plane
(of the illustration). Then, ~! = d✓/dtn̂ and

n̂ ·
d~L
dt

= n̂ · ~⌧ext
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The external force is that due to gravity. Then

~⌧ext =
X

i

~ri ⇥ mi~g

=

 
X

i

mi~ri

!
⇥ ~g

= ~Rcm ⇥ M~g

In particluar, we find that torque about CM due to gravity is zero. Then, since
~L = I ~! + ~L? and n̂ · ~L? = 0, therefore

n̂ · I
d~!
dt

= n̂ ·
⇣
~Rcm ⇥ M~g

⌘

=) I
d(~! · n̂)

dt
= n̂ ·

⇣
~d ⇥ M~g

⌘

where ~d is along the perpendicular from the axis of rotation to the CM.
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Referring to the illustration, ~d ⇥ ~g = �d g sin ✓ n̂. Then the equation describing
rotation is

I
d2✓

dt2 = �Mgd sin ✓

For small angular displacement ✓, sin ✓ ⇡ ✓, so that

I
d2✓

dt2 = �Mgd ✓

which is the equation for SHM with angular frequency

! =

r
Mgd

I
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Moment of Inertia
The moment of inertia of a rigid body about its axis of rotation is given by

I =
X

i

mi⇢
2
i

where ⇢i is the perpendicular distance of the i th particle from the axis of rotation.
Moment of Inertia of a uniform rod of mass M about an axis passing through its

centre

I =
X

x
dm x2

=
M
l

X

x
dx x2

!
M
l

Z l/2

�l/2
dx x2

=
M l2

12
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Moment of Inertia of a uniform ring of mass M and radius R about an axis

passing through its centre and perpendicular to its plane

Since all the particles are at the same perpendicular distance R from the axis, the
moment of inertial is simply

I = MR2
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Moment of Inertia of a uniform disk of mass M and radius R about an axis

passing through its centre and perpendicular to its plane

We divide the disk into concentric rings of radii r and thickness dr . The mass of such a
ring will be

dm =
2⇡rdr
⇡R2 M

=
2M
R2 r dr

Then the moment of inertia of this ring about the axis will be

dI = dm r2

=
2M
R2 r3 dr
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Therefore the moment of inertia of the disk will be

I =
2M
R2

Z R

0
dr r3

=
MR2

2
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Moment of Inertia of a uniform sphere of mass M and radius R about an axis

passing through its diameter

We divide the sphere into disks as illustrated. The volume of the disk is

dV = ⇡⇢2 R sin ✓d✓

The mass of the disk will be

dm =
M

4
3⇡R3

dV

=
3M
4R2 ⇢2 sin ✓d✓
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The moment of inertia of the disk will be

dI =
⇢2 dm

2

=
3
8

MR2 sin5 ✓d✓

where we have used ⇢ = R sin ✓. Then the total moment of inertial will be

I =
3
8

MR2
Z ⇡

0
d✓ sin5 ✓

=
2
5

MR2
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