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In a uniform gravitational field, torque due to gravity about the centre of mass is zero. Therefore,
the spin angular momentum about the centre of mass is conserved. However, for celestial objects in orbit
about other massive objects (such as a moon around a planet), the variation in gravitational field across
the object results in a non-zero torque about the centre of mass. This effect, however small, can produce
a change in the spin of the object over long enough time scales. In partcular, if the object is irregular in
shape, the effect of this torque can be chaotic. This project explores this phenomenon by assuming there
is an irregularly shaped moon in orbit around a planet, and aims to study the variation in the rotational
motion of the moon as a function of the eccentricity of its orbit around the planet. One of Saturn’s moons,
Hyperion, shows such a chaotic behaviour.
For simplicity, we will model the moon as two masses connected by a (massless) rod of length d, in
orbit around a planet of mass M . This artificial shape models the irregularity in the shape of the moon,
responsible for the chaotic behaviour. Following is the system, along with the coordinate system used. The
centre of mass has coordinates X and Y and the rod is at (instantaneous) angle θ relative to the x axis

CM

1. First, we simulate the motion of the centre of mass of the moon about the planet. Write differential
equations for the X and Y coordinates of the centre of mass. Next, reduce them to dimensionless
form by choosing suitable length and time scales. The perihelion distance and eccentricity of orbit
of moons and planets is usually tabulated and can be easily found. We will therefore assume we
know these, and express everything in terms of these known quantities. The natural length scale is
therefore the perihelion distance RP of the moon (actually, its centre of mass). As time scale, we
choose the period of the orbit. Show that the period of orbit is related to RP and eccentricity as

t20 =
4π2

GM

R3
P

(1− ε)3

Using these scales, show that the equations for coordinates of the centre of mass reduce to

d2x

dτ2
= − 4π2
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where x, y, r are dimensionless coordinates and radial distance and τ is the dimensionless time.
Now, we need initial conditions to simulate the orbit of the moon. We take the initial position to be
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that at perihelion and the initial velocity as velocity at that point. First, show that the (dimensional)
perihelion speed VP is given by

VP =

√
GM

RP
×
√

1 + ε

What is the dimensionless perihelion speed? Choosing initial coordinates (and components of initial
velocity) of centre of mass wisely, use a Verlet algorithm to determine the position and velocity
of the moon as functions of time, and plot the orbit for different eccentricities. Check for energy
conservation.

2. Next, we analyze the rotational motion about the centre of mass. We assume that the mass-rod
system is in the plane of the orbit. Refer to the following illustration
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Show that the torque about the centre of mass is

~τ = −GMm1(~r
′
1 × ~R)
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= −3GMµ
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where ~d = ~r1 − ~r2 = ~r
′
1 − ~r

′
2 and µ is the reduced mass. Next, write r1 and r2 as

r1 =
√
~r1 · ~r1

=
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Using binomial approximation, show that

r2 − r1 ' −
~d · ~R
R

so that the toque expression is

~τ ' 3GMµ

R5
(~d× ~R)(~d · ~R)

Let k̂ be a unit vector along the z direction (out of the plane of the illustration). Using

I
d(~ω · k̂)

dt
= ~τ · k̂
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and expressing ~d and ~R in terms of their components and unit vectors î and ĵ, show that the angular
velocity (component along k̂) satisfies the equation

dω

dt
= −3GM

R5
(X sin θ − Y cos θ) (X cos θ + Y sin θ)

=⇒ d2θ

dt2
= −3GM

R5
(X sin θ − Y cos θ) (X cos θ + Y sin θ)

Using our natural length and time scales, show that this reduces to

d2θ

dτ2
= − 12π2
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1
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(x sin θ − y cos θ) (x cos θ + y sin θ)

This can be written as

dθ

dτ
= Ω
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where Ω is the dimensionless angular velocity.

3. Finally, we have the following differential equations for the position and velocity of the centre of
mass, and the angular position and angular velocity about the centre of mass

dx
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= vx
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Thinking of x, y and θ as position coordinates and vx, vy, ω as velocity components, these equations
are such that the acceleration components depend only on the position coordinates. Therefore, given
x(0), y(0), θ(0), vx(0), vy(0),Ω(0), we can predict these quantities at all instants of time. For different
values of eccentricity and the same initial conditions for centre of mass as before, choose some initial
value of θ and ω and calculate them as functions of time, using the Verlet algorithm. You will need
to restrict θ to interval θ ∈ [0, 2π[. Which means that in the algorithm, you need to check if θ exceeds
2π. If it does, it has to be reset to zero, just as it exceeds 2π. Plot the variation in θ and Ω vs time
for different values of eccentricity, starting with ε = 0. Do you observe a regularity in the plots for
zero eccentricity? How does the regular behaviour change as you increase the eccentricity?

4. Chaos: In a qualitative way, chaos can be thought of as extreme sensitivity of a system to initial
conditions. A very tiny change in initial conditions can get magnified into an exponentially large
difference in the behaviour of the system with time. Observe what happens if you change the initial
angle and/or angular velocity by a small amount. For two such close initial conditions, observe what
happens to θ(τ) and Ω(τ) as time progresses. Do the two sets of plots look close? If they differ
substantially, after how long (approximately) do the differences become substantial?
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